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On stochastic optimization in sample
allocation among strata

Summary - The usefulness of stochastic optimization for sample allocation in stratified
sampling is studied. Three models of stochastic optimization are compared: E-Model,
Modified E-model and V-model, recently presented by Dı́az-Garcı́a and Garay-Tápia
(Comput. Statistics Data Anal., 3016–3026, 51, 2007), with the classical sample
allocation, which distributes the costs among strata in such a way that the variance
of an estimator is minimized. To make the comparison, a simulation study was
conducted. None of the methods was the most efficient for all cases, but usually the
classical allocation was the most efficient, followed by the E-model, quite similar to
the former.
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1. Introduction

Sample allocation in stratified sampling has been the subject of many
studies (see, e.g., Särndal et al. 1992 and citations therein), and it still is.
Recently, Dı́az-Garcı́a and Garay-Tápia (2007) have proposed to use stochastic
programming to allocate a sample among strata. They rightly noticed that the
classical formulation of sample allocation suffers from an unrealistic assumption
that an allocation variable is also a survey variable, quite an unlikely situation
in practice. For this reason the stratum variances to be used in allocation are
unknown and need to be estimated. In practice it is done based on the results
of a previous survey or the knowledge of an auxiliary variable, which should
be strongly correlated with the survey variable. This problem has also been
indicated by many others, including Särndal et al. (1992).

In Dı́az-Garcı́a and Garay-Tápia’s (2007) paper these unknown variances
of the survey variable are replaced with their estimates from a sample, which
are random variables. Taking this into account, the authors presented three
stochastic programming models to find the optimum allocation, namely the E-
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model, Modified E-model and V-model. All these models rely on the unknown
stratum variances and, in the case of the last two models, stratum fourth mo-
ments. Thus the authors used the results of a previous survey to replace these
quantities, as is done in the classical allocation. They showed that stochastic
programming provides different allocation from the one the classical method
does; they did not show, however, which of the approaches was better. By
better allocation we understand allocation that provides more precise estimates
of the parameter of interest.

Therefore, this research aims to choose the best allocation among the
following: (i) classical allocation (hereafter also called the C-allocation), (2)
allocation based on the E-model (the E-allocation), (2) allocation based on
the Modified E-model (the ME-allocation), and (4) allocation based on the V-
model (the V-allocation). In this paper we will focus only on the allocation
that aims to minimize variance of the estimator of the population mean subject
to fixed survey costs. We believe, however, that the results and conclusions
will refer also to the dual problem, in which a survey cost is minimized subject
to variance constraints.

2. Sample allocation

Consider a finite population U of size N subdivided into H non-overlapping
strata Uh of sizes N = (N1, ..., NH )T ; Y is a survey variable. A problem of
interest is to allocate a survey cost among the strata so that the variance of the
estimator θ̂ of some parameter θ studied is minimized.

Hereafter we will focus on estimation of the population mean, so θ = Ȳ .
In this case the variance to be minimized is

V
(
θ̂
)

=
H∑

h=1

W 2
h S2

h

nh
−

H∑
h=1

Wh S2
h

N
, (1)

where Wh = Nh/N , S2
h = 1

Nh−1

Nh∑
i=1

(
yih − Ȳh
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In classical allocation the following problem is solved:
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where C is the total permissible survey cost, C0 is the fixed survey cost,
c = (c1, ..., cH )T is the vector of costs of selecting one unit from the strata,
and 2 is the H -vector of twos.

Dı́az-Garcı́a and Garay-Tápia (2007) introduced three models of stochastic
programming for sample allocation. They can be presented by the following
general model
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the hth stratum, and k1 and k2 are nonnegative constants, the sum of which
equals 1. For k1=1 and k2=0, the model becomes the E-model, for k1=0 and
k2=1 the V-model, and for other choices the Modified E-model. As Dı́az-Garcı́a
and Garay-Tápia (2007) did, in this paper we consider the Modified E-model
with k1 = k2 = 0.5.

To arrive at these models, the asymptotic distributions of sample variances
s2

h are used, for which both nh and Nh − nh need to go to infinity. Thus the
E-model is very similar to the C-model, for large populations. If the stratum
variances are known, apparently the classical allocation will be the best one
because it will reach the minimum variance of the estimator. Nonetheless, since
the stratum variances are unknown and their estimates are used instead, we are
not able to say which method is the best.

Dı́az-Garcı́a and Garay-Tápia (2007) considered Lagrangian-based alloca-
tion, in which the objective function is minimized subject to cT n = C −C0 via
the Lagrange multipliers. The values obtained are rounded to integers, an oper-
ation that may provide non-optimum allocation. To overcome this difficulty the
authors employed nonlinear integer programming. To allocate a sample, in this
paper we will use the random search algorithm, recently proved very efficient
for the optimum sample allocation (Kozak 2006). Note, however, that for the
purpose of this paper it does not make difference which optimization procedure
one chooses, provided that it yields optimality for the objective function subject
to specified constraints. Our interest lies not in an allocation procedure itself,
but in how an allocation problem is stated, namely via the classical approach
or the stochastic programming.
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3. Simulation study

To compare the four allocations, we conducted a simulation experiment
designed as follows. Two populations (Y variables), one with N = 1000 and
the other with N = 5000, were generated according to a gamma distribution
with shape parameter 0.5. They were then sorted and stratified into H= 3
and 5 strata as given in Table 1, which also presents information about other
parameters of the generated populations.

Table 1: Description of the two artificial populations studied.

h Nh S2
h C4

h

Population 1 (N = 1000), H = 3

1 250 2.54×10−4 1.27×10−7

2 500 0.02653 1.49×10−3

3 250 0.79064 6.3019

Population 1 (N = 1000), H = 5

1 50 2.33×10−7 9.86×10−14

2 300 7.32×10−4 1.03×10−6

3 300 8.62×10−3 1.45×10−4

4 300 0.1509 0.0582

5 50 1.0445 5.7016

Population 2 (N = 5000), H = 3

1 1000 8.72×10−5 1.56×10−8

2 3000 0.0468 5.45×10−3

3 1000 0.6773 6.3181

Population 2 (N = 5000), H = 5

1 500 6.18×10−6 7.79×10−11

2 1500 1.34×10−3 3.67×10−6

3 1500 0.0126 3.14×10−4

4 1000 0.0554 6.11×10−3

5 500 0.7156 7.5046

To simulate the randomness of the variances used in the allocation procedures,
for each such population and number of strata, 100,000 stratified samples were
taken using simple random sampling without replacement. The overall sample
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size was n = 0.1N and stratum sample sizes were proportionally distributed
among strata. Based on each such sample, S2

h and C4
h were estimated and

then used to allocate among strata the sample of size n = 0.1N using the four
allocations compared. Stratum costs of selecting one unit in each stratum were
assumed to be the same and equal to 1. Then for each allocation the variance
of the estimator was calculated using Eq. (1) based on known population values
of S2

h . These variances were compared, and between two allocations the one
was more efficient for which the variance was smaller.

The following notes need to be made to make this simulation study correct.
Denote the optimal (n1, ..., nH )T by n. The true variance of the estimator in
the general case is
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Note, then, that the difference of this equation from equation (1) lies in the
expectation only. Equation (1) is in fact V (ȳ|n) = V (ȳ|sample) (because the
optimal n is determined by the sample drawn). So for a particular sample
this can be seen as a Monte Carlo estimate of the true variance based on
this one sample.

In our simulation, we have 100,000 samples, so we have 100,000 Monte
Carlo values of V (ȳ|n) for a particular allocation method. Then we can treat the
mean of these 100,000 values of V (ȳ|n) as the estimate of the true variance
of the estimator, also for this particular allocation method. Note that these
V (ȳ|n) are i.i.d., so by the law of large numbers the mean will converge to the
expectation, that is, the true variance of the estimator. Since we have 100,000
samples, this estimate of the mean is very close to the true value. Note also
that the expressions of the true variances of the estimators are all the same.
That is to say, under both E and V models, the variance is still

E
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Therefore, although we do not compare true variances of the estimators, we
compare their Monte Carlo estimates that are obtained based on known true
stratum variances S2

h . For a particular iteration, a sample is drawn to estimate
these variances S2

h in order to derive the optimum sample sizes for each al-
location; based on these random sample sizes we estimate the true variances
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of the estimator for each allocation (this time we use known stratum variances
S2

h). As we discussed above, these are Monte Carlo estimates of the true vari-
ances, so they are comparable among the allocations. The allocation with the
smallest variance estimated in that way will be the best for a particular sample.
Hence finding which allocation is the best in most situations in these terms
may be thought of as finding the most efficient allocation. In this simulation,
it seems that we use the same values of survey variable in the first and second
survey. But note that we only need the stratum variances in the second survey,
and in real life the variances can be assumed more or less stable between
a previous survey and the new survey, so it is reasonable to use the same
populations.

Tables 2, 3 and 4 summarize the results of the experiment. Table 2 shows
that the C-allocation and E-allocation were on average comparably efficient and
the two most efficient allocations, although the former reached the optimum
allocation most often. Moreover, from Tables 3 and 4 it follows that the C-
allocation was in most cases more efficient than the E-allocation. Note, however,
that there were cases in which these allocations were less efficient than the ME-
allocation and V-allocation. Still these were the C-allocation and E-allocation
that were the most efficient both on average and most often. Note also that
the results of the ME-allocation and V-allocation were visibly less precise than
those of the other two allocations. In addition, for many cases, especially
when the populations were stratified into three strata, the ME-allocation and
V-allocation provided the same sample sizes from strata and the same variances,
showing a close similarity between the allocations.

Interestingly, for N = 1000 and H = 5, the variability in the variances
obtained via all the allocations was very large, especially compared to the
other situations studied (note the coefficients of variation and the maximum
variances obtained). It resulted from the specificity of the population and its
stratification; this variation came mainly from the very small (N5=50) fifth
stratum. According to the proportional allocation rule used to estimate the
variance and fourth moment of the survey variable, we draw only five samples
from this stratum, so the estimates were not stable. As a result, the number
of units each method allocated to this stratum varied dramatically among the
100000 samples. Unfortunately, the variances of the estimator were strongly
influenced by this stratum’s variance. Having said that, it is worth noting
that for this situation the same scenario for the performance of the allocation
methods was obtained as for the other situations.
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Table 2: Summary statistics of the simulation results obtained for two populations studied via
the four allocations compared. Mean, median and maximum values are given for variances divided
by the optimum (minimum) variance.

Classic E-model M E-model V-model

Population 1, H = 3

Mean 1.027 1.030 1.055 1.055

Median 1.014 1.014 1.032 1.032

Reached min(1) 6207 5520 2633 2633

Max 1.553 1.593 1.635 1.635

CV(2) 0.037 0.039 0.058 0.058

Population 1, H = 5

Mean 1.149 1.129 1.565 1.565

Median 1.052 1.046 1.098 1.098

Reached min 772 270 425 424

Max 4.502 4.510 5.211 5.198

CV 0.274 0.211 0.588 0.589

Population 2, H = 3

Mean 1.009 1.009 1.063 1.063

Median 1.004 1.005 1.029 1.029

Reached min 1752 2 107 107

Max 1.157 1.157 1.371 1.371

CV 0.011 0.011 0.076 0.076

Population 2, H = 5

Mean 1.022 1.022 1.089 1.089

Median 1.011 1.011 1.039 1.039

Reached min 28 31 23 24

Max 1.335 1.335 1.512 1.512

CV 0.026 0.026 0.104 0.104

(1)Number of times for the corresponding allocation for which the minimum variance of the estimator
was reached.
(2)Coefficient of variation.
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Table 3: Results of the simulation study for N = 1000 and H = 3 (below diagonal) and H = 5
(above diagonal). Number of cases are given for which the column allocation was more efficient (i.e.,
had smaller variance) than the corresponding row allocation; in brackets, number of cases are given
for which the column and row allocations provided the same results.

Classic E-model M E-model V-model

Classic 46917 (3163) 27800 (1262) 27805 (1263)

E-model 48823 (30098) 27100 (1306) 27104 (1300)

M E-model 64718 (2139) 59450 (1343) 3085 (93773)

V-model 64718 (2139) 59450 (1343) 0 (100000)

Table 4: Results of the simulation study for N = 5000 and H = 3 (below diagonal) and H = 5
(above diagonal). Number of cases are given for which the column allocation was more efficient (i.e.,
had smaller variance) than the corresponding row allocation; in brackets, number of cases are given
for which the column and row allocations provided the same results.

Classic E-model M E-model V-model

Classic 38465 (10462) 30706 (3) 30711 (3)

E-model 88172 (1878) 31217 (1) 31192 (1)

M E-model 75477 (45) 74680 (23) 16042 (68122)
V-model 75477 (45) 74680 (23) 1 (99998)

4. Conclusion

From the experiment it follows that among the four allocation methods
compared, none could be considered the best one for every situation. Nonethe-
less, the C-allocation was most often the best followed by the E-allocation,
a result that should not surprise given the similarity between them. The V-
allocation and ME-allocation, the performance of which was very similar, were
usually the worst.

The results do not mean that stochastic programming should be discounted
in further research on sample allocation among strata. It is possible that for
some other situations the allocation based on one of the models of stochastic
programming (maybe a model not considered in this paper) might occur to be
more efficient than the classical allocation. In other words, there may be some
other equivalent deterministic problems that will work more efficiently than
the classical method. Note that stochastic optimization offers the opportunity
to find many different deterministic problems in sample allocation. Take the
Modified E-model, for example. Intuitively, the E-model focuses on minimizing
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the variance of the estimator of the population mean, while the V-model on
minimizing the variation of this variation. The Modified E-model attempts
to strike a happy medium, minimizing a linear combination of the variance
(the E-model’s focus) and the variance’s variance (the V-model’s focus). Only
the case k1 = k2 = 0.5 was considered in this paper, but better k1 and k2

may exist. With their optimal values, the Modified E-model may work more
efficiently than both the E-model and V-model. Nonetheless, studying the way
of searching for the optimal E-model or other efficient deterministic problems
is beyond the scope of this work.

From our results it follows that at the moment we cannot claim that stochas-
tic programming offers allocation that would perform better than the classical
allocation method.
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