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Abstract

Panel count data arise in many fields and a number of estimation procedures have

been developed along with two procedures for variable selection (Sun & Zhao, 2013).

In this paper, we discuss model selection and parameter estimation together. For the

former, a focused information criterion (FIC) is presented and for the latter, a fre-

quentist model average (FMA) estimation procedure is developed. A main advantage,

also the difference from the existing model selection methods, of the FIC is that it

emphasizes the accuracy of the estimation of the parameters of interest, rather than all

parameters. Further efficiency gain can be achieved by the FMA estimation procedure

as unlike existing methods, it takes into account the variability in the stage of model

selection. Asymptotic properties of the proposed estimators are established and a sim-

ulation study conducted suggests that the proposed methods work well for practical

situations. An illustrative example is also provided.

Keywords: estimating function, focused information criterion, frequentist model average,

model selection

1 Introduction

Panel count data arise from event history studies concerning recurrent events when study

subjects are observed only at discrete time points (Kalbfleisch & Lawless, 1985; Sun & Zhao,

1



2013). In other words, only incomplete information is available for the sample path of the

underlying recurrent event process. More specifically, with panel count data, one knows only

the number of the events that occur between observation times, but not the occurrence times.

In contrast, the observed data are usually referred to as recurrent event data if each subject

is observed continuously or complete information is available (Cook & Lawless, 2007).

A well-known example of panel count data is the bladder cancer data discussed in Sun

& Wei (2000) and Wellner & Zhang (2007) among others. The data arose from a study

conducted by the Veterans Administration Cooperative Urological Research Group (Wei

et al., 1989; Ghosh & Lin, 2002). In the study, the patients with superficial bladder cancer

were randomly assigned to one of three treatment groups and followed for the recurrences

of the superficial bladder tumors. Furthermore, the patients visited the clinical centers

periodically and at each visit, the bladder tumors that occurred since the previous visit were

removed and the number was recorded. In other words, only panel count data are available

about the tumor recurrence process. Other areas that often produce panel count data include

epidemiological studies, reliability studies and social sciences.

Many statistical procedures have been developed for the analysis of panel count data. For

example, Sun & Kalbfleisch (1995) and Wellner & Zhang (2000) investigated the nonpara-

metric estimation of the mean function of recurrent event processes based on panel count

data. Sun & Wei (2000), Cheng & Wei (2000), Zhang (2002) and Wellner & Zhang (2007)

considered regression analysis of the data, while Thall & Lachin (1988), Sun & Kalbfleisch

(1993), Sun & Fang (2003), Park et al. (2007), Zhang (2006), Balakrishnan & Zhao (2011)

and Zhao & Sun (2011) discussed the treatment comparison based on the data. In addition,

He et al. (2008) and Li et al. (2011) studied the analysis of multivariate panel count data

and Tong et al. (2009), Wu & He (2012) and Zhang et al. (2013) considered the variable

selection problem. In the following, we discuss the model selection and estimation problems

together.

The three variable selection procedures given in the last three references mentioned above

share two common features. One is that all were developed based on the overall goodness-

of-fit of the data and thus they treat all variables or covariates equally. It is apparent that

in practice, sometimes there may exist some variables or covariates of interest and others

are simply nuisance variables. Furthermore, the potential best models may be different
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depending on the variables of interest. The other common feature is that all three methods

focus on the underlying recurrent event process only. It is well-known that in the case of

panel count data, unlike recurrent event data, there exists another process, the observation

process, that characterizes observation time points. This observation process could play an

important rule in the analysis and thus in the variable selection (Sun & Zhao, 2013). To

address the two issues mentioned above, we will present a different model selection procedure

based on the focused information criterion (FIC), which was originally proposed by Claeskens

& Hjort (2003) for general parametric models and further investigated by Hjort & Claeskens

(2006), Zhang & Liang (2011) and Zhang et al. (2012) among others.

The idea behind the FIC is to minimize the asymptotic mean square error of the esti-

mators of pre-specified parameters and it is easy to see that it can choose different models

depending on the variables of interest. On the other hand, the selected model is random

by any criteria that depends on data. Corresponding to this, we will develop a frequentist

model average (FMA) estimation procedure by following Hjort & Claeskens (2003), Zhang

& Liang (2011), Zhang et al. (2012), Wang & Zou (2012) and Wang et al. (2012). Instead

of performing estimation based on a single chosen model, the FMA procedure employs the

weighted average of the estimates obtained under all possible models. It is apparent that

the approach can take into account the variability in model selection and thus yield more

efficient estimation.

Compared to the existing results for the FIC and the FMA in the literature, the setup

for panel count data presents new challenge since the same covariates may affect both the

observation process and the underlying response process. In special cases when the recurrent

event process and the observation process are independent, the application of the FIC and the

FMA can be simplified and some similar results on other models can be found in Claeskens &

Hjort (2008), Wang et al. (2012), Zhang & Liang (2011) among others. In general, however,

the observation process partly determines the asymptotic distributions of the resulting FMA

estimators and should not be ignored from the implementation of the FIC and the FMA

procedures. Technical details about this issue will be remarked in Sections 3 and 4.

The rest of the article is organized as follows. We will begin in Section 2 with introducing

the notation, models and some assumptions that will be used throughout the paper. A

commonly used estimation procedure for regression parameters is also reviewed. Section 3
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discusses parameter estimation for a given sub-model and presents some preliminary results

needed for the development of the FIC and the FMA procedures in Section 4. In addition,

Section 4 gives a method for the construction of confidence intervals for the parameter of

interest. Section 5 presents some results obtained from a simulation study conducted for

the evaluation of the finite sample properties of the proposed estimators, and an illustrative

example is discussed in Section 6. Section 7 contains some concluding remarks.

2 Models, Assumptions and Review

Consider an event history study that involves n subjects who may experience some recurrent

events. For subject i, let Ni(t) denote the cumulative number of the events that have

occurred up to time t, 0 ≤ t ≤ ξ, where ξ is a known time point representing the study

length, i = 1, ..., n. Also for subject i, suppose that there exists a d-dimensional vector of

covariates denoted by Zi = (Zi1, ..., Zid)
> and without loss of generality, assume that the

expected value of Zi is 0. To describe the effects of covariates on Ni(t), we assume that given

Zi, the mean function of Ni(t) has the form

µi(t) = µ0(t) exp(β>Zi) , (1)

where µ0(·) is a completely unspecified function and β denotes the vector of unknown re-

gression parameters. That is, the Ni(t)’s follow the proportional mean model (Cook and

Lawless, 2007).

In the following, suppose that only panel count data on the Ni(t)’s are available. In

other words, each counting process Ni(·) is observed only at a sequence of discrete time

points denoted by Ti1 < Ti2 < · · · < TiKi . Let Ci denote the follow-up time for the ith

subject and define Ñi(t) = Hi{min(t, Ci)}, where Hi(t) =
∑Ki

l=1 I(Til ≤ t), representing the

underlying observation process on Ni(·). Note that for the Ñi(t)’s, one observes recurrent

event data and in reality, covariates may have effects on Ñi(t) too. For this, we will assume

that Hi(t) follows the Cox intensity model given by

µ̃i(t) = µ̃0(t) exp(γ>Zi) (2)
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(Andersen & Gill, 1982), where µ̃0(·) is also an unknown function as µ0(t) and γ denotes the

covariate effect. Also we will assume that given Zi, Hi and Ni are stochastically indepen-

dent of each other, Ci is independent of (Hi, Ni, Zi), and {(Hi, Ni, Zi, Ci), i = 1, ..., n} are

independent and identically distributed for t ∈ [0, ξ].

As discussed above, if all variables or covariates are equally of interest, several methods

have been developed for estimation of models (1) and (2). In particular, for estimation of β

and γ, Sun & Wei (2000) proposed to use the following estimating equations

Wn(β, γ) =
1√
n

n∑
i=1

Zie
−(β+γ)>ZiN̄i = 0 (3)

and

Un(γ) =
1√
n

n∑
i=1

∫ ξ

0

{
Zi −

∑n
i=1 Yj(t)Zje

γ>Zj∑n
i=1 Yj(t)e

γ>Zj

}
dÑi = 0 . (4)

In the above, Yj(t) = I(Cj ≥ t) and

N̄i =

Ki∑
l=1

Ni(Til)I(Til ≤ Ci) =

∫ ξ

0

Ni(t)dÑi(t) .

In the next section, we will generalize the method above to a more general set-up.

In the following, we will assume that there exist some variables or covariates of interest.

Note that this can occur in many situations and one example is that one of the covariates is

the treatment indicator and the main goal of the study is to estimate the treatment effect.

For the case, it is apparent that one would like the variables or covariates to be included

in all candidate models. To formulate the set-up, we will follow the local mis-specification

framework discussed in Claeskens & Hjort (2003) and Hjort & Claeskens (2003) and assume

that the true model is in a local neighborhood of a certain fixed model. More specifically, it

is supposed that the true values of regression parameters β and γ can be represented by

βtrue = (β>1 , β
>
2 )> = (β>1 , δ

>/
√
n)>,

γtrue = (γ>1 , γ
>
2 )> = (γ>1 , η

>/
√
n)>,

(5)

respectively. Here we assume that β1 and β2 are dβ1 and dβ2 dimensional vectors, γ1 and γ2

are dγ1 and dγ2 dimensional vectors, and δ/
√
n and η/

√
n represent the degrees of departure
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from the fixed null model given by β = β0 = (γ>1 , 0
>)> and γ = γ>0 = (γ>1 , 0

>)>, respectively.

3 Some Preliminary Results

Before presenting the FIC and the FMA procedures, we will first generalize the estimation

procedure based on the estimating equations (3) and (4) to a more general set-up in this

section. Note that for both model selection and estimation, the inclusion of β1 and γ1 in the

models is mandatory, while that of β2 and γ2 is optional. That is, while all the components

of β1 and γ1 are included in the models, only some components of β2 and γ2 are included or

none is included.

In the following, we will assume that dβ1 > dγ1 , indicating that if a covariate is included

for the observation process, then it is also included for modeling the recurrent event process.

Hence there are 2dβ2+dγ2 possible sub-models for the consideration. Let S be a subset of

{1, 2, . . . , dβ2} and R be a subset of {1, 2, . . . , dγ2}. We will use sets S and R to refer a

sub-model that includes exactly β2,s components of β2 for s ∈ S and γ2,r components of γ2

for r ∈ R. Denote the regression coefficients under the sub-model {S,R} by βS and γR such

that βS = ΠS β and γR = ΨR γ, where ΠS and ΨR denote the selection matrices that project

β and γ to their sub-vectors βS and γR, respectively. Note that the upper-left sub-matrices

of ΠS and ΨR are always two identity matrices since β1 and γ1 are always included in the

models.

For estimation of βS and γR under the sub-model {S,R}, denote ZiS = ΠSZi and ZjR =

ΨRZj and define

G
(0)
nR(γR, t) =

1

n

n∑
i=1

Yj(t)e
γ>RZjR , G

(1)
nR(γR, t) =

1

n

n∑
i=1

Yj(t)ZjRe
γ>RZjR ,

G
(2)
nR(γR, t) =

1

n

n∑
i=1

Yj(t)Z
⊗2
jR e

γ>RZjR , EnR(γR, t) =
G

(1)
n (γR, t)

G
(0)
n (γR, t)

,

VnR(γR, t) =
G

(2)
n (γR, t)

G
(0)
n (γR, t)

− E(γR, t)
⊗2,

where M⊗2 = MM> for any matrix M . Also let G
(i)
n (·, ·), i = 0, 1, 2, En(·, ·) and Vn(·, ·)

denote the quantities defined above but corresponding to the full model, respectively, and

g(i)(·, ·), i = 1, 2, 3, e(·, ·) and v(·, ·) denote their corresponding limits when n → ∞, which
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exist under the regularity conditions given in the appendix. Then motivated by the estimat-

ing equations (3) and (4), under the sub-model {S,R}, one can estimate βSR and γR by the

solutions to the following estimating equations

WnSR(βSR, γR) =
1√
n

n∑
i=1

ZiSe
−(βS+ΠSΨ>

RγR)>ZiSN̄i = 0 , (6)

UnR(γR) =
1√
n

n∑
i=1

∫ ξ

0

{ZiR − EnR(γR, t)} dÑi = 0 . (7)

Let β̂SR and γ̂R denote the estimators of βSR and γR defined above, respectively. The following

theorem gives the asymptotic properties of them.

Theorem 1. Assume that the conditions in the Appendix hold. Then under the local mis-

specification framework (5), we have that

√
n(β̂SR − βS0)

d−→(ΠSAΠ>S )−1ΠSW − ΠSΨ
>
R (ΨRBΨ>R )−1ΨRU

+(ΠSAΠ>S )−1ΠSA


0

δ

+

0

η

− ΠSΨ
>
R (ΨRBΨ>R )−1ΨRB

0

η

 , (8)

√
n(γ̂R − γR0)

d−→(ΨRBΨ>R )−1ΨRU + (ΨRBΨ>R )−1ΨRB

0

η

 . (9)

Here A = E
[
N̄i(Zi)

⊗2 exp{−(β0 + γ0)>Zi}
]
, Γ = E

[
(N̄iZi)

⊗2 exp{−2(β0 + γ0)>Zi}
]
, B

denotes the limit of

Bn(γ0) = − 1√
n

∂Un(γ0)

∂γ
=

1

n

n∑
i=1

∫ ξ

0

Vn(γ0, t)dÑi ,

γR0 = ΨRγ0, βS0 = ΠSβ0, U and W are normal variables with joint distributionW
U

 ∼ N

0,

 Γ ρ

ρ> B

 ,

and ρ = E
[
NiZi exp{−(β0 + γ0)>Zi}

∫ ξ
0
{Zi − e(γ0, t)}> dÑi

]
.

Remark 1. If the recurrent event process and the observation process are independent, (8)
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can be simplified to

√
n(β̂SR − βS0)

d−→(ΠSAΠ>S )−1ΠSW + (ΠSAΠ>S )−1ΠSA

0

δ

 .

This expression is similar to existing results on sub-model estimates (e.g. Zhang & Liang,

2011), and can be further simplified as in Wang et al. (2012).

Remark 2. Note that the variance matrix of U is B. With some matrix algebra manipu-

lation, it can be shown that the result in (9) is equivalent to that in Lemma 1 of Hjort &

Claeskens (2006). However, our focus in this paper is on the recurrent event process while

γ is a parameter associated with the observation process and is not our primary interest.

It is worth to note that the parameters δ and η represent the distance between a candidate

model and the full model and they will play an important role in developing the FIC and

the FMA procedures. For their natural estimators δ̂ =
√
nβ̂2 and η̂ =

√
nγ̂2, based on the

theorem above, it is easy to show that under the full model, we have that

δ̂
d−→∆δ = (0, Idβ2 )(A−1W −B−1U) + δ,

η̂
d−→∆η = (0, Idγ2 )B−1U + η,

where Id denotes the d dimensional identity matrix.

4 FIC and FMA Procedures

Now we are ready to present the FIC and the FMA procedures. For this, suppose that our

main goal is to estimate a scalar parameter ν = ν(β) with true value νtrue = ν(βtrue). We will

assume that ν depends only on β since in practice the focus is usually on the recurrent events

instead of the observation process. Some comments on this will be given below. Denote the

estimator of ν under the sub-model {S,R} by νSR(β̂SR), which can be obtained by inserting

the estimator of β. First we will establish the asymptotic property of νSR = νSR(β̂SR) in the

following theorem.
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Theorem 2. Suppose that the conclusions of Theorem 1 hold and ν is continuously differ-

entiable at β0. Then as n→∞, we have that

√
n(ν̂SR − νtrue)

d−→ ΛS =ν>β (ΩS,−Π>S ΠSΦR)

W
U

+ ν>β (ΩSA− Id,ΩSA− Π>S ΠSΦRB)


0

δ

0

η

 ,

where νβ = ∂ν(β0)/∂β, ΩS = Π>S (ΠSAΠ>S )−1ΠS and ΦR = Ψ>R (ΨRBΨ>R )−1ΨR.

Remark 3. If the recurrent event process and the observation process are independent, then

the result reduces to

√
n(ν̂SR − νtrue)

d−→ ΛS =ν>β ΩSW + ν>β (ΩSA− Id)

0

δ

 ,

which is similar to some existing results in the literature (e.g. Wang et al., 2012; Zhang

& Liang, 2011). The recurrent event process is of our primary interest and we assume

that ν is a function of β. For situations when the parameter of interest is a function of the

observation process, we refer the reader to Lemma 3 of Hjort & Claeskens (2006) or Theorem

6.2 of Claeskens & Hjort (2008) for corresponding results.

Note that as mentioned above, the idea behind the FIC is to minimize the asymptotic

mean square error (MSE). Thus to define the FIC with respect to estimation of ν = ν(β),

we need to derive the asymptotic MSE of ν̂SR, which is given by

EΛ2
S =ν>β (ΩS,−Π>S ΠSΦR)

 Γ ρ

ρ> B

 (ΩS,−Π>S ΠSΦR)>νβ

+ ν>β (ΩSA− Id,ΩSA− Π>S ΠSΦRB)


0

δ

0

η



⊗2

(ΩSA− Id,ΩSA− Π>S ΠSΦRB)>νβ

9



based on Theorem 2 above. Therefore it is natural to define the FIC as

FICS =ν>β (ΩS,−Π>S ΠSΦR)

 Γ ρ

ρ> B

 (ΩS,−Π>S ΠSΦR)>νβ

+ ν>β (ΩSA− Id,ΩSA− Π>S ΠSΦRB)


0

∆δ

0

∆η



⊗2

(ΩSA− Id,ΩSA− Π>S ΠSΦRB)>νβ

− ν>β (ΩSA− Id,ΩSA− Π>S ΠSΦRB)


0 0 0 0

0 Idβ2 0 −Idβ2
0 0 0 0

0 0 0 Idγ2


 A−1ΓA−1 A−1ρB−1

B−1ρ>A−1 B−1



×


0 0 0 0

0 Idβ2 0 −Idβ2
0 0 0 0

0 0 0 Idγ2



>

(ΩSA− Id,ΩSA− Π>S ΠSΦRB)>νβ.

For practical use, unknown quantities A, B, Γ, ρ and νβ should be replaced by

An = n−1

n∑
i=1

[
N̄i(Zi)

⊗2 exp{−(β̂n + γ̂n)>Zi}
]
,

Γn = n−1

n∑
i=1

[
(N̄iZi)

⊗2 exp{−2(β̂n + γ̂n)>Zi}
]
,

Bn(γ̂n) =

∫ ξ

0

Vn(γ̂n, t)dÑ ,

ρn = n−1

n∑
i=1

[
NiZi exp{−(β̂n + γ̂n)>Zi}

∫ ξ

0

{Zi − e(γ̂n, t)}> dÑi

]
,

and ν̂β, respectively. Note that the FICS defined above is an unbiased estimate of EΛ2
S. For

model selection, the FIC procedure will select the model that gives the smallest FICS among
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all sub-models. If the observation process can be ignored, then the FIC reduce to

FICS =ν>β (ΩS)Γ(ΩS)
>νβ + ν>β (ΩSA− Id)

 0

∆δ

⊗2

(ΩSA− Id)
>νβ

− ν>β (ΩSA− Id)

0 0

0 Idβ2

A−1ΓA−1

0 0

0 Idβ2

> (ΩSA− Id)
>νβ.

With respect to estimation of covariate effects and their inference, it is apparent that

a simple method is to focus or rely on the selected model. However, it is well-known that

the selected model is random as the data are random and if a poor model is chosen, the

subsequent estimate may have large bias or under estimated variance (Hjort & Claeskens,

2003). Corresponding to this and following Hjort & Claeskens (2003), we propose to employ

the model averaging technique to define the FMA estimator of ν = ν(β) as

ν̂ =
∑

S

∑
R

cSRν̂SR . (10)

In the above, the { cSR = c(S,R | δ̂, η̂) } are weight functions that satisfy
∑

S

∑
R
cSR = 1 and

are assumed to depend on the observed data through δ̂ and η̂ only.

It is easy to see that one advantage of the FMA estimator given above is that it can take

into account the variation in the model selection process. For the selection of the weight

functions, it is apparent that a simple or naive approach is to set them to be either 0 or 1

depending on if a sub-model is selected. Some general choices are given in the next section.

The theorem below gives the asymptotic distribution of ν̂.

Theorem 3. Suppose that the conclusions of Theorem 1 hold. If ν is differentiable at β0

and c(S,R | ·, ·) is continuous almost everywhere, then as n→∞, we have that

√
n(ν̂ − νtrue)

d−→Λ = ν>β (A−1W −B−1U) + ν>β (P − Id)

 0

∆δ

+ ν>β (P −Q)

 0

∆η

 ,

where P =
∑

S,R c(S,R | ∆δ,∆η)ΩSA and Q =
∑

S,R c(S,R | ∆δ,∆η)Π
>
S ΠSΦRB.

Remark 4. If the recurrent event process and the observation process are independent, then
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the result reduce to

√
n(ν̂ − νtrue)

d−→Λ = ν>β A
−1W + ν>β (P − Id)

 0

∆δ

 ,

which is similar to existing results in the literature on some other models (e.g. Zhang &

Liang, 2011).

Note that the limiting distribution given above is not normal and thus a confidence

interval cannot be constructed in the standard way. Nevertheless, one can show that the

confidence interval for ν̂ can be asymptotically approximated by

ν̂ −
ν̂>β (Pn − Id)(0

>, ∆̂>δ )> + ν̂>β (Pn −Qn)(0>, ∆̂>η )>
√
n

±
zα

√
ν̂>β Fnν̂β
√
n

.

In the above, zα denotes a normal quantile at the significance level α,

Pn =
∑
S,R

c(S,R | δ̂, η̂)Ω̂SAn ,

Qn =
∑
S,R

c(S,R | δ̂, η̂)Π>S ΠSΦ̂RBn

and

Fn = A−1
n ΓnA

−1
n −B−1

n ρ>nA
−1
n − A−1

n ρnB
−1
n +B−1

n .

5 A Simulation Study

A simulation study was conducted to assess the performance of the FIC and the FMA pro-

cedures proposed in the previous sections. For comparison, we also considered the penalized

procedure given in Tong et al. (2009) with the use of the Smoothly Clipped Absolute De-

viation penalty function along with the Akaike information criterion (AIC) (Akaike, 1973)

and the Bayesian information criterion (BIC) (Schwarz, 1978). For the latter two methods,
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following Hjort & Claeskens (2006) and Tong et al. (2009), we define them as

AICSR = LSR + 2(|S|+ |R|),

BICSR = LSR + log(n)(|S|+ |R|)
(11)

corresponding to the sub-model {S,R}. In the above, |S| and |R| denote the numbers of

components in βS and βR, respectively, and

LSR = n log

[
n∑
i=1

exp
{
−β̂>S ZiS − γ̂RZiR

}
N̄i/n

]
−2

n∑
i=1

∫ ξ

0

[
γ̂>R ZiR − log

{
nG

(0)
nR(γ̂R, t)

}]
dÑi .

As the FIC procedure, the AIC and the BIC procedures will select the models with the

smallest AICSR and BICSR, respectively. In the Appendix, we prove that AIC and BIC

criteria defined in (11) depend on the data through δ̂ and η̂ asymptotically.

To generate the observed data, we suppose that Ni(t) is a Poisson process with the mean

function µi(t) = 0.5t2 exp(β>trueZi) and Hi(t) follows the model in (2) with µ̃0(t) = t. Here we

assume that βtrue = {1,−2, 1, c(0, 0.5, 0.5)/
√
n}>, γtrue = {0.5,−0.5, 0.5, c(0,−0.1, 0.1)/

√
n}>

and Zi follows the multiple normal distribution with mean 0 and the covariance matrix

{0.5I(i 6=j)}ij, where c is a constant. For the follow-up time Ci =min(C∗i , τ), it is assumed that

C∗i ∼Uniform(1, 10) and τ = 8. Also it is supposed that our interest is on four parameters

ν1 = β1, ν2 = β2, ν3 = β3 and ν4 =
∑6

i=1 βi. For model selection, as mentioned above, we

assume that β1, β2, β3, γ1, γ2 and γ3 are always included and hence there are 23+3 = 64

possible models to choose from or to average. To carry out the FMA procedure, of course,

we need to choose the weight functions cSR’s. For this, we considered the following three

choices
exp(−1

2
AICSR)∑

SR
exp(−1

2
AICSR)

,
exp(−1

2
BICSR)∑

SR
exp(−1

2
BICSR)

,
exp(−1

2
FICSR)∑

SR
exp(−1

2
FICSR)

. (12)

All simulation results given below are based on 1000 replications with n = 100 or 200.

Table 1 presents the estimated mean squared errors of the estimated four parameters

given by seven methods with c = 0, 3 and 5. In the table, p-AIC, p-BIC and p-FIC denote

the estimators defined in Section 4 based on the models chosen by the AIC, the BIC and

the FIC procedures, while s-AIC, s-BIC and s-FIC are the FMA estimators based on the

three weight functions described above, respectively. It is easy to see that the p-FIC and

13



s-FIC have similar MSE, but both gave smaller MSE than the other five estimators. In

other words, the results suggest that the FIC procedure yields more accurate estimates of

the covariate effects of interest than the AIC, the BIC and Tong’s procedures. The results

also indicate that although not clear based on the FIC, the FMA procedure is clearly better

and more accurate than those based on the AIC and the BIC. We also considered different

set-ups and obtained similar results.

6 An Illustrative Example

In this section, we provide an illustrative example by applying the methodology proposed in

the previous sections to the bladder cancer data discussed above (Sun & Zhao, 2013). In this

study, the patients were randomly allocated to one of three treatments: placebo, thiotepa

and pyridoxine. In addition, for each patient, the information is available on two potentially

important covariates, the number of initial tumors and the size of the largest initial tumor.

One main goal of the study is to evaluate the effects of the treatments and the two covariates

on the recurrence rates of the bladder tumors. As mentioned before, only panel count data

were observed for the recurrences of the bladder tumors. For the analysis below, following

Tong et al. (2009), we will confine ourselves to the patients in the placebo (47) and thiotepa

(38) groups.

To apply the proposed approach, for patient i, let Ni(t) denote the cumulative number

of bladder tumours that have occurred up to time t. In addition, define Zi1 = 1 if the

patient was assigned to the thiotepa group and 0 otherwise, and Zi2 Zi3 to be the number

of initial tumors and the size of the largest initial tumor, respectively. Also following Tong

et al. (2009), we define the covariate vector to be Zi = (Zi1, Zi2, Zi3, Z
2
i2, Z

2
i3, Zi2Zi3)>. For

the analysis, we will focus on the three main effects represented by the three parameters

ν1 = β1, ν2 = β2 and ν3 = β3 and include them in all sub-models. Table 2 presents the

estimated effects given by the AIC, the BIC and the FIC procedures and the 95% confidence

intervals obtained by using the FMA procedure. For comparison, the results based on the

full model are also obtained and included in the table. Note that in the table, the columns

under Selection and FMA correspond, respectively, to the estimates obtained without and

with the model average.
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One can see from Table 2 that all methods indicate that the thiotepa treatment is effective

in decreasing the recurrence rate of bladder tumors and the number of initial tumors is

positively related to the tumor recurrence rate. However, the size of the largest initial

tumor do not have a significant effect on the tumor recurrence. Note that there are some

disagreements between the CI based on the full model and CIs based on FMA, especially

for parameters ν2 and ν3. Theoretically, all CIs should have the right coverage for large

sample if the full model is correct. The CIs based on FMA are asymptotically equivalent to

the CI from the full model, i.e., the difference between each confidence limits is oP (n−1/2)

(Kabaila & Leeb, 2006; Wang & Zhou, 2013). In spite of the difference in the CIs, they all

give consistent conclusions for the example. To give more details about the model selection,

Table 3 gives the selected covariates by each method. They show that both the AIC and the

BIC chose the smallest model, while the FIC gave different models based on the parameter

of interest as expected. The conclusions here on the three parameters of interest are similar

to those given in Tong et al. (2009).

7 Concluding Remarks

This paper discussed regression analysis of panel count data with the focus on both model

selection and parameter estimation. For the problem, we generalized the FIC and the FMA

procedures developed in Claeskens & Hjort (2003) and Hjort & Claeskens (2003) among

others. In particular, we established the asymptotic distribution of the proposed FMA

estimators and provided a method for interval estimation. Also a simulation study was

performed for the assessment of the proposed methods and indicates that they can yield

more accurate estimates than the existing procedures.

Although the methodology proposed is based on the estimation procedure given in Sun

& Wei (2000), it is easy to see that the idea can be applied to other similar estimation

procedures or problems. In other words, it is straightforward to generalize the FIC and

the FMA procedures presented here to other methods for panel count data or more general

situations. In addition, note that the definition of the FIC does not depend on the likelihood.

Thus instead of the proportional mean model (1), one could apply the idea to other models

such as the additive mean model or the transformation model (Sun & Zhao, 2013). The
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same is true on the assumption for the observation process. It is not difficult to generalize

the proposed method to the situation where the observation process follows the proportional

mean or rate model (Cook & Lawless, 2007) instead of the intensity model (2).

Note that in the proposed method, it has been assumed that the parameter of interest

ν depends only on β. It is apparent that sometimes it may also depend on the unknown

baseline mean function µ0(t) and thus it would be useful to generalize the presented method

to this more general case. However, this would not be easy as it involves the estimation of

µ0(t). In addition, the estimated baseline mean function may have a different convergence

rate than the estimate of β. Another direction for future research is that in this paper,

we have assumed that the follow-up time is independent of the underlying recurrent event

process of interest. Sometimes this may not be true and in this situation, a common approach

is to develop some joint modeling methods (Sun & Zhao, 2013). The weight function for

s-FIC in (12) is different from Hjort & Claeskens (2003) and Zhang et al. (2012). In Hjort

& Claeskens (2003), the FIC value is scaled by a scale parameter corresponding to the full

model and there is another algorithmic parameter κ which is often set to 1. We tried various

values of κ and found that the s-FIC performs better when κ is equal to the scale parameter.

However, there is no theoretically justification for our choice of the weight function. The

selection of the weight functions for the FMA estimator, especially the optimal weights, is

another topic for future research. The existing literature on this is mainly on linear models.

As pointed out by Hjort & Claeskens (2003), existing bootstrapping methods do not work in

the local mis-specification framework for FMA. Therefore, it would be interesting and useful

to investigate how to construct valid bootstrapped CIs for the FMA approaches.
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Table 1: Estimated Mean Square Errors based on simulated data

c p-AIC p-BIC p-FIC s-AIC s-BIC s-FIC Tong
n = 100

ν1 0 0.352 0.326 0.201 0.337 0.319 0.206 0.348
3 0.453 0.439 0.204 0.445 0.433 0.200 0.458
5 0.311 0.308 0.258 0.306 0.298 0.246 0.319

ν2 0 0.536 0.498 0.267 0.520 0.491 0.273 0.497
3 0.613 0.584 0.216 0.598 0.572 0.225 0.572
5 0.443 0.415 0.218 0.429 0.407 0.225 0.407

ν3 0 0.372 0.351 0.185 0.359 0.343 0.192 0.365
3 0.389 0.375 0.232 0.379 0.366 0.229 0.387
5 0.326 0.315 0.268 0.320 0.311 0.255 0.332

ν4 0 0.257 0.239 0.154 0.246 0.230 0.164 0.232
3 0.326 0.306 0.143 0.314 0.298 0.150 0.297
5 0.247 0.233 0.134 0.236 0.227 0.133 0.227

n = 200
ν1 0 0.086 0.080 0.065 0.083 0.078 0.067 0.082

3 0.093 0.092 0.086 0.092 0.091 0.082 0.091
5 0.108 0.109 0.106 0.107 0.107 0.100 0.110

ν2 0 0.134 0.126 0.100 0.131 0.124 0.104 0.123
3 0.137 0.129 0.091 0.134 0.126 0.095 0.127
5 0.136 0.129 0.086 0.132 0.126 0.090 0.125

ν3 0 0.101 0.095 0.074 0.098 0.094 0.077 0.096
3 0.098 0.094 0.083 0.096 0.093 0.081 0.095
5 0.094 0.094 0.097 0.093 0.092 0.089 0.094

ν4 0 0.069 0.066 0.053 0.067 0.064 0.056 0.064
3 0.080 0.074 0.052 0.076 0.072 0.057 0.072
5 0.080 0.076 0.056 0.076 0.073 0.057 0.072

p-AIC, p-BIC and p-FIC are estimators obtained from the model chosen by the AIC, the
BIC and the FIC, respectively; s-AIC, s-BIC and s-FIC are frequentist model averaging
estimators given in (10) with weight functions defined in (12); Tong refers to the method
given in Tong et al. (2009).
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Table 2: Estimated covariate effects for the bladder tumour study
Point estimates 95% CI based on FMA

Selection FMA and the full model
ν1 AIC -0.986 -0.967 (-1.080, -0.853)

BIC -0.986 -0.978 (-1.092, -0.865)
FIC -0.963 -0.958 (-1.072, -0.845)

FULL -0.926 (-1.040, -0.813)
ν2 AIC 0.660 0.832 (0.448, 1.166)

BIC 0.660 0.726 (0.334, 1.052)
FIC 0.640 0.654 (0.257, 0.975)

FULL 1.228 (0.870, 1.587)
ν3 AIC -0.123 -0.011 (-0.491, 0.446)

BIC -0.123 -0.080 (-0.562, 0.374)
FIC -0.256 -0.189 (-0.674, 0.263)

FULL 0.245 (-0.223, 0.714)

Table 3: Selected models for the bladder tumour study
Method Parameter Components Selected

β γ
AIC ν1, ν2, ν3 1,2,3 1,2,3
BIC ν1, ν2, ν3 1,2,3 1,2,3
FIC ν1 1,2,3,5 1,2,3,5,6

ν2 1,2,3,5 1,2,3,4,5,6
ν3 1,2,3,4 1,2,3,4,5,6
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