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Abstract

Under general parametric models, Claeskens and Hjort (2003) proposed a focused
information criterion (FIC) for model selection which emphasizes the accuracy of es-
timation for particular parameters of interest. This paper extends their framework to
include a semi-parametric varying-coefficient partially linear model when covariates in
both the parametric and the non-parametric parts are subject to measurement errors.
We allow the covariance matrices of the measurement errors to be unknown and be
estimated by replicated observations. Also, we derive the asymptotic properties of
the frequentist model average (FMA) estimator for the model in consideration, which
generalizes the results obtained by Wang et al. (2012). In addition to asymptotic prop-
erties, finite sample performance of the proposed methods are examined in a simulation
study, and a data set obtained from Continuing Survey of Food Intakes by Individuals
conducted by the U.S. Department of Agriculture’s (CSFII) is considered.

Keywords: Focused information criterion, measurement errors, model averaging,
model selection, semi-parametric models

1 Introduction

Model selection has been an important part of any statistical analysis, and many methods
and criteria have been proposed in the literature for choosing the “best model”. One type of
criteria are based on the likelihood such as the Akaike information criterion (AIC) (Akaike,
1973) and the Bayesian information criterion (BIC) (Schwarz, 1978). The generalization
of these criteria is restricted because the likelihood is often intractable when the candidate
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models are complicated, e.g. for semi-parametric models. Also, these criteria emphasize
selecting the “best model” in the sense that the chosen model is closest to the true model. But
such a model may not be the “best model” for other purposes such as parameter estimation
and prediction. Another class of methods are motivated by minimizing the prediction errors,
including Mallows’ Cp (Mallows, 1973), Cross Validation (Stone, 1974), Generalized Cross
Validation (Craven and Wahba, 1979), among others. These criteria concern the quality of
prediction and may not be optimal for estimation.

Recently, Claeskens and Hjort (2003) proposed the focused information criterion (FIC) that
emphasizes the quality of an estimator for a particular parameter of interest. For a pre-
specified parameter, the FIC selects the model that minimizes the asymptotic risk of esti-
mators obtained from sub-models. Since this criterion focuses on estimators of a parameter,
it identifies the “best model” for estimating the parameter of interest. In addition, although
FIC was proposed under full parametric models, the criterion itself does not require the
likelihood, so it is possible to apply it to complicated models. For example, Hjort and
Claeskens (2006) studied the FIC for the Cox hazard regression model; Zhang and Liang
(2011) generalized the criterion for generalized additive partial linear models; Zhang et al.
(2012) considered a tobit model with a non-zero threshold and considered non-quadratic loss
functions; Peña et al. (2013) applied the FIC approach to estimate benchmark doses in a
risk assessment study.

The purpose of this paper is to extend the definition of the FIC, broadening the scope
of Claeskens and Hjort (2003)’s framework to include a semi-parametric varying-coefficient
partially linear model when covariates in both the parametric and non-parametric compo-
nents are measured with errors. Although Wang et al. (2012) extended Hjort and Claeskens
(2003)’s investigation on the frequentist model average (FMA) in the varying-coefficient
partially linear measurement error (VCPLE) model, they did not consider the FIC. Addi-
tionally, we consider a more general situation in which the covariates in the non-parametric
component are also subject to measurement errors; in Wang et al. (2012) these covariates
could be observed precisely. In addition, we assume now that the covariance matrices of the
measurement errors are unknown.

Hjort and Claeskens (2003) showed that, by taking a weighted average on sub-model esti-
mates, the accuracy of estimation can be improved further, and moreover, the uncertainty
in model selection step can be incorporated for subsequent inference. They developed an
asymptotic framework for the FMA estimation based on general parametric models. The
idea of the FMA estimator has drawn a lot of attention in recent years and much progress has
been made as seen in Hjort and Claeskens (2006), Claeskens and Carroll (2007), Claeskens
and Hjort (2008), Schomaker et al. (2010), Zhang and Liang (2011), Zhang et al. (2012),
Wang and Zou (2012), Wang et al. (2012), Schomaker (2012), and Schomaker and Heumann
(2014) among others. This paper is also a study the FMA approach and its asymptotic
properties are derived, which extends Wang et al. (2012)’s work to a more general case.

The remainder of the paper is organized as follows. In Section 2, we discuss the model setup
and estimation method. In Section 3, we provide the main theoretical results. Results of
simulation experiments along with an example based on real data are contained in Section 4.
Section 5 concludes, and technical details are given in the appendix.

2



2 Model setup and estimation procedure

Assume that independent and identically distributed samples (Yi,Wi, ζi, Ti), i = 1, ..., n are
taken form the following VCPLE model:

Y = X>θ + Z>α(T ) + ε,

W = X + U,

ζ = Z + V,

(1)

where Y is the response variable; (X,Z, T ) are covariates; θ = (β>, γ>)> with β and γ
being p and q dimensional coefficient vectors, respectively; α(·) = {α1(·), ..., αr(·)}> is a
vector of r unknown functions; ε is a random error with mean 0 and variance σ2 which is
independent of (X,Z, T ). T is a one dimensional random variable for simplicity. Here, it is
assumed that X and Z cannot be observed directly. Instead, their surrogates W = X + U
and ζ = Z + V , respectively, are observed, with U and V being vectors of random errors
with mean 0 and covariance matrices Σu and Σv, respectively. Furthermore, U and V are
mutually independent and they are independent of (X,Z, T ) and ε.

Wang et al. (2012) considered a similar model setup, but in their analysis Z is free of measure-
ment errors and Σu is known. In this paper, we deal with the case that Σu and Σv are both un-
known and replicated observations are available; that is, Wij = Xi+Uij and ζil = Zi+Vil are
observed, j = 1, ..., J , l = 1, ..., L, i = 1, ..., n (see Carroll et al., 2006). To facilitate the dis-
cussion, write Y = (Y1, ..., Yn)>, X = (X1, ..., Xn)>, W = (W1, ...,Wn)>, U = (U1, ..., Un)>,
Z = (Z1, ..., Zn)>, T = (T1, ..., Tn)>, ε = (ε1, ..., εn)> and M = {Z>1 α(T1), ..., Z>n α(Tn)}>.

Now we discuss the estimation approach starting with the case when both Xi and Zi are
measured with errors with known Σu and Σv. In this case, the estimator given in Wang et al.
(2012) is inconsistent because the measurement errors on Zi are not taken into account. To
ensure consistency, the following modified profile least-squares estimator is adopted:

θ̂ = arg min
θ

[
n∑
i=1

{
Yi − Ŷi − (Wi − Ŵi)

>θ
}2

− nθ>Σuθ

]
, (2)

where Ŷi = ψiY, Ŵi = {ψiW}>, ψi = (ζ>i , 0)
{

(Dζti)
>ΩtiD

ζ
ti − φti

}−1

(Dζti)
>Ωti ,

Dζ
ti =

ζ
>
1

T1−ti
h
ζ>1

...
...

ζ>n
Tn−ti
h
ζ>n

 , φti =
n∑
j=1

(
1

Tj−ti
h

Tj−ti
h

(Tj−ti)2
h2

)
⊗ ΣvKh(Tj − ti),

and ⊗ is the Kronecker product. The usage of nθ>Σuθ in (2) is the so called “correction for
attenuation” for measurement errors in the covariates of the linear part of the model (Liang
et al., 1999; You and Chen, 2006). The term φti is a correction suggested by You et al. (2006)
for the varying-coefficient model under measurement errors. It has the purpose of correcting
the bias introduced by measurement errors in the non-parametric part of the model. You
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et al. (2006) showed that the estimator of the unknown function under their model setup is
inconsistent if this term is dropped. One can write equation (2) in matrix notation:

θ̂ =
(
W̃>W̃ − nΣu

)−1

W̃>Ỹ, (3)

where Ỹ = (Y1 − Ŷ1, ..., Yn − Ŷn)> and W̃ = (W1 − Ŵ1, ...,Wn − Ŵn)>.

If Σu and Σv are unknown, they can be consistently and unbiasedly estimated by

Σ̂u =
1

n(J − 1)

n∑
i=1

J∑
j=1

(Wij − W̄i)
⊗2 and Σ̂v =

1

n(L− 1)

n∑
i=1

L∑
l=1

(ζil − ζ̄i)⊗2,

respectively, where W̄i =
∑J

j=1Wij/J and ζ̄i =
∑L

l=1 ζil/L. With the availability of repli-

cated observations, the mean surrogates W̄i and ζ̄i should be used since they have smaller
measurement errors. Let Ūi =

∑J
j=1 Uij/J , V̄i =

∑L
l=1 Vil/L and W̄, Ū, ζ̄ and V̄ be the

matrices consisting of W̄i, Ūi, ζ̄i and V̄i, i = 1,...,n, respectively.

Using the means W̄i and ζ̄i, an estimator analogous to (3) is

θ̂ =

(˜̄W>˜̄W − nJ−1Σ̂u

)−1 ˜̄W> ˜̄Y, (4)

where ˜̄Y = (Y1 − ˆ̄Y1, ..., Yn − ˆ̄Yn)>, ˜̄W = (W1 − ˆ̄W1, ...,Wn − ˆ̄Wn)>, ˆ̄Yi = ψ̄iY, ˆ̄Wi =

{
ψ̄iW̄

}>
, ψ̄i = (ζ̄

>
i , 0)

{
(Dζ̄ti)

>ΩtiD
ζ̄
ti − φ̄ti

}−1

(Dζ̄ti)
>Ωti , D

ζ̄
ti =

ζ̄
>
1

T1−ti
h
ζ̄
>
1

...
...

ζ̄
>
n

Tn−ti
h
ζ̄
>
n

 and φ̄ti =

1
L

∑n
j=1

(
1

Tj−ti
h

Tj−ti
h

(Tj−ti)2
h2

)
⊗ Σ̂vKh(Tj − ti).

3 FIC and model averaging

Following the local mis-specification framework used in Hjort and Claeskens (2003) and
Wang et al. (2012), we let the true value of θ be θtrue = (β>, γ>true)

> = (β>, δ>/
√
n)>, where

the parameter γ represents the degree of a model’s departure from the narrow model in
which θ=θ0=(β>, 0>)>.

3.1 Estimation of coefficients under the full model and sub-models

When n→∞, by an approach similar to the proof of Theorem 1 in Wang et al. (2013), we

obtain n−1˜̄W>˜̄W p−→ J−1Σu +B, where

B =E
(
XX>

)
− E

[
E(XZ>|T )

{
E(ZZ>|T )

}−1
E(XZ>|T )>

]
+ J−1E

[
E(XZ>|T )

{
E(ZZ>|T )

}−1
Σv

{
E(ZZ>|T )

}−1
E(XZ>|T )>

]
,

4



and
p−→ denotes convergence in probability. Accordingly, a consistent estimator of B is

B̂ = n−1˜̄W>˜̄W − J−1Σ̂u ≡ n−1Bn. If Σu is known and no replicates are available, then ˜̄W
and J−1Σ̂u in B̂ need to be replaced by W̃ and Σu, respectively.

Following an approach similar to that of Wang et al. (2012), we obtain the relationship
between the estimator under the full, (β̂>full, γ̂

>
full)
>, and the estimator under the sub-model S,

(β̂>S , γ̂
>
S )>: (

β̂S

γ̂S

)
=

(
Ip Cns

0|S|×p (Π>S AnΠS)
−1Π>S An

)(
β̂full

γ̂full

)
≡ Gns

(
β̂full

γ̂full

)
, (5)

where An = Bn22 − Bn21B
−1
n11Bn12; Π>S is an |S| × q selection matrix; |S| is the number of

elements in S; Cns = B−1
n11Bn12

(
Iq − A−1/2

n HnsA
1/2
n

)
; Hns = A

1/2
n ΠS

(
Π>S AnΠS

)−1
Π>S A

1/2
n .

The following theorem illustrates the asymptotic properties of sub-model estimators.
Theorem 1. If conditions 1-5 in the Appendix hold, and Ui, Vi, εi and (Xi, Zi, Ti) are
independent, then, as n→∞,

√
n

(
β̂S − β
γ̂S

)
d−→ N

{(
CSδ

(Π>S AΠS)
−1Π>S Aδ

)
, GSPG

>
S

}
;

specifically for estimator under the full model,

√
n

(
β̂full − β
γ̂full

)
≡
(
Mn

δ̂

)
d−→
(
M
D

)
∼ N

{(
0
δ

)
, P

}
,

where
d−→ denotes convergence in distribution, A = B22 − B21B

−1
11 B12, CS and GS are re-

spectively the limits of An/n, Cns and Gns, P = B−1FB−1,

F = E

([
W̄i − E

(
XiZ

>
i |Ti

) {
E
(
ZiZ

>
i |Ti

)}−1
ζ̄i

] (
εi − Ū>i θ0

)
+

∑J
j=1(Uij − Ūi)⊗2θ0

J(J − 1)

)⊗2

,

and R⊗2 = RR> for any matrix R.

From the proof in the appendix, a consistent estimator of F is

F̂ =
1

n

n∑
i=1

[(
W̄i − ˆ̄Wi

){(
Yi − ˆ̄Yi

)
−
(
W̄i − ˆ̄Wi

)>
θ̂

}
+

∑J
j=1(Wij − W̄i)

⊗2θ̂

J(J − 1)

]⊗2

,

where θ̂ = (β̂>full, γ̂
>
full)
>. Hence the asymptotic variance GSPG

>
S can be consistently estimated

by GnsP̂G
>
ns, where P̂ = B̂−1F̂ B̂−1.

3.2 Main results

In this subsection, we consider the estimation of the parameter µtrue = µ(β, γtrue). The fo-
cused parameter does not depend on variance components as we assume the same variance
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structure for all models. Let the estimator based on sub-model S be µ̂S = µ(β̂S, γ̂S); the
estimate is inserted if the corresponding coefficient is included in the model and 0 is used
otherwise. The following theorem is obtained.

Theorem 2. Assume that µ is differentiable at θ0 = (β>, 0>)>. If conditions 1-5 in the
Appendix are satisfied, and Ui, Vi, εi and (Xi, Zi, Ti) are independent, then

√
n(µ̂S − µtrue)

d−→ ΛS = µ>β
{
M +B−1

11 B12(D − δ)
}

+ ω>
{
δ − A−1/2HSA

1/2D
}
,

where ω = B21B
−1
11 µβ −µγ, µβ = ∂µ(β, 0)/∂β, µγ = ∂µ(β, 0)/∂γ, and HS has the same form

as Hns with An being replaced by A.

From Theorem 2, the asymptotic mean square error of µ̂S is

E(Λ2
S) = ω>(Iq−A−1/2HSA

1/2)δδ>(Iq−A−1/2HSA
1/2)>ω>+ (µ>β , µ

>
γ ΠS)GSPG

>
S (µ>β , µ

>
γ ΠS)

>.

E(Λ2
S) can be unbiasedly estimated by

r̂(S) =ω>(Iq − A−1/2HSA
1/2){DD> − (0, Iq)P (0, Iq)

>}(Iq − A−1/2HSA
1/2)>ω

+ (µ>β , µ
>
γ ΠS)GSPG

>
S (µ>β , µ

>
γ ΠS)

>

=
{
ω>(Iq − A−1/2HSA

1/2)D
}2

+ (µ>β , µ
>
γ + 2ω>)P (µ>β , µ

>
γ )>

− 2(0, ω>A−1/2HSA
1/2)P (µ>β , µ

>
γ )>.

Following the idea of Claeskens and Hjort (2003), we drop the constant term (µ>β , µ
>
γ +

2ω>)P (µ>β , µ
>
γ )> and define the theoretical FIC value for this model to be

FICS =
{
ω>(Iq − A−1/2HSA

1/2)D
}2 − 2(0, ω>A−1/2HSA

1/2)P (µ>β , µ
>
γ )>. (6)

Note that if there is no measurement error, then the second term (including the negative
sign) on the right hand side of (6) reduces to 2ω>ΠS(Π

>
S AΠS)

−1Π>S ω, so the FIC for the
varying-coefficient partially linear model has the same expression as that defined in Claeskens
and Hjort (2003) for parametric models. This FIC is for the limit experiment. For practical
analysis, we need to plug in estimates for unknown parameters and thereby obtain a definition
for the real FIC.
Definition 1. The real FIC for the VCPLE model is defined as

FICns =
{
ω̂>(Iq − A−1/2

n HnSA
1/2
n )δ̂

}2

− 2(0, ω̂>A−1/2
n HnSA

1/2
n )P̂n(µ̂>β , µ̂

>
γ )>,

where ω̂, µ̂β and µ̂γ are consistent estimates of ω, µβ and µγ, respectively. For model
selection, the sub-model with the smallest value of FICns is selected.

To gain further efficiency and to take into account the variation from the model selection
stage, we also consider the frequentist model averaging (FMA) estimator as in Hjort and
Claeskens (2003) and Wang et al. (2012). The FMA estimator considered here has the
following form:

µ̂avg =
∑

S

c(S|δ̂)µ̂S, (7)
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where c(S|δ̂)’s are weight functions that sum to one. Theorem 3 depicts the asymptotic
properties of µ̂avg.
Theorem 3. Assume that µ is differentiable at θ0, and the weight functions c(S|d)’s are
continuous almost everywhere. If conditions 1-5 in the Appendix hold, and Ui, Vi, εi and
(Xi, Zi, Ti) are independent, then we have

√
n(µ̂avg − µtrue)

d−→ Λ = µ>β
{
M +B−1

11 B12(D − δ)
}

+ ω> {δ −Q(D)D} ,
EΛ = ω> [δ − E{Q(D)D}] , and

Var(Λ) = µ>β (I, B−1
11 B12)P (I, B−1

11 B12)>µβ + ω>Var {Q(D)D}ω
− 2µ>β (I, B−1

11 B12)Cov
{

(M>, D>)>, Q(D)D
}
ω,

where Q(D) = A−1/2 {
∑

S
c(S|D)HS}A1/2.

The limiting distribution in Theorem 3 is not normal since the weights are functions of
the random variable D. Confidence intervals of unknown parameters can be constructed
analogously to equation (12) in Wang et al. (2012).

4 Numerical studies

4.1 Simulation studies

In this section, we conduct simulation experiments to evaluate the finite sample performance
of the FIC and the FMA approach. We simulate samples from the VCPLE model (1) for
the case when α(T ) = {sin(6πT ), sin(2πT )}>. The covariates, random error and the mea-
surement errors are generated as follows. Covariates X and Z are generated from N(0, I6)
and N(0, I2), respectively; T is generated from a uniform distribution on (0, 1); ε follows a
standard normal distribution; measurement errors U and V are generated from normal dis-
tributions N(0, σ2

uI6) and N(0, σ2
vI2), respectively. To estimate the covariance matrices of U

and V , each four replicates of W and ζ are generated (i.e. J = L = 4). For the true value of
each parameter, we let σu = σv = 0.1, 0.5 and θ = {β>, γ>}> = {(1.5, 2), δ>/

√
n}>. We con-

sider three cases of δ: δ(1) = (0, 0, 0, 0)>, δ(2) = (0.5, 0, 0.5, 0)> and δ(3) = (0.5, 0.5, 0.5, 0.5)>.
We focus our interest on two estimands, µ1 = β1 and µ2 = β1 + β2 + γ1 + γ2 + γ3 + γ4.

Following Buckland et al. (1997)’s suggestion, we set the weights based on smoothed AIC

(S-AIC), smoothed BIC (S-BIC) and smoothed FIC (S-FIC) values as exp(−AICns/2)∑
S exp(−AICns/2)

,
exp(BICns/2)∑
S exp(−BICns/2)

, and exp(−FICns/2)∑
S exp(−FICns/2)

respectively. We compare these FMA estimators with

the estimators obtained from the full model along with AIC-, BIC- and FIC-based model
selection, and we use empirical mean square error (MSE) to evaluate the performance of esti-
mators. Empirical MSEs are calculated based on 1000 independent samples of sizes n = 100
and n = 200.

Table 1 presents the MSEs of each estimator relative to that of the full model. A relative
empirical MSE value smaller than 1 indicates that the given method is superior to the full
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model estimator, and vice versa. From the results we have the following discoveries. First,
FIC based methods are superior to the corresponding AIC or BIC based method in term of
MSE. This agrees with the fact that FIC aims to select a model with minimum asymptotic
MSE. For FIC model averaging and FIC model selection, no method dominates the other,
and their relative performance depends on the parameter of interest as well as the true
value of δ. The superiority of FIC based methods are more significant for µ2 than they are
for µ1. Second, the S-AIC and S-BIC model averaging estimators always produce smaller
MSEs than AIC and BIC model selection estimators, respectively. This pattern is obvious
particularly if the parameter of interest is µ2. Third, model averaging and model selection
approach are generally better strategies than the full model approach. The only exception
in our simulations is when the sample size n = 100 and our focus is on µ1. In this scenario,
AIC model selection estimator performs similarly to the full model estimator.

4.2 A real data example

As an illustration, we consider an application of the proposed methods to a subset of data
from the Continuing Survey of Food Intakes by Individuals (CSFII) conducted by the U.S.
Department of Agriculture. This is part of the Nationwide Food Consumption Survey,
published by the U.S. Department of Agriculture Human Nutrition Information Service,
Hyattsville, Maryland (CSFII Reports No. 85-4 and No. 86-3). The same data set was
used in Wang et al. (2012), but they only investigated the FMA approach. Here we apply
the FIC to select models in addition to using FMA estimation. Additionally, we include
the race information in our analysis which was not considered in Wang et al. (2012). This
data set contains dietary intake and related information of n = 1827 individuals between the
age of 25 and 50. There were 36 individuals who did not provide their race, so we removed
observations from these individuals and only used the remaining 1791 observations in our
analysis. Using the available data, we specify the following model for calories intake, y:

y =
11∑
i=1

βixi + f0(t) + zf1(t) + ε,

where x1, x2 and x3 are intake levels of fat, protein, carbohydrates, respectively; x4 is an
indicator variable for alcohol consumers with value 1 for alcohol consumers and 0 otherwise;
x5 is the body mass index; x6 and x7 are intake levels of Vitamin C and Vitamin A respec-
tively; x8, x9, x10 and x11 are indicator variables representing race categories White, Black,
Asian and Aleut, respectively; z is income; t is age. In addition, x6 and x7 are measured
with errors, and they are replaced by the mean values of the observed surrogates.

Following the idea of distinguishing between mandatory and optional explanatory variables
in Magnus and Durbin (1999) and Danilov and Magnus (2004), we treat x1, x2 and x3 as
mandatory in the parametric component of the model because fat, protein and carbohydrates
are the key determinants of calories and we are primarily interested in the effects that these
variables have on calorie intake. We are less interested in the effects of other variables on y,
so we treat them as optional.
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We focus on five parameters of interest: µ1 = β1, µ2 = β2, µ3 = β3, µ4 =
∑11

i=1 βi and
µ5 = β1/β2. µ1, µ2 and µ3 are the marginal effects that each of the mandatory explanatory
variables have on calorie intake; µ4 is an example of a linear combination of the marginal
effects; µ5 is of interest because it measures the effect of fat relative to that of protein. Seven
estimation methods are considered: FMA by S-AIC, S-BIC and S-FIC, model selection by
AIC, BIC and FIC, and full model estimation.

Tables 2 presents the estimation results, in which the numbers in parenthesis are 95% confi-
dence intervals. For point estimates of the marginal effects, all methods produced estimates
of µ3 larger than that of µ1 and µ2, indicating that carbohydrates is the main calorie intake,
followed by fat and protein. FIC based methods yield estimates of µ1 that are larger and
estimates of µ2 that are smaller than the corresponding estimates obtained from other meth-
ods, which most accentuates the common belief that calorie intake is associated with fat
consumption more than with other consumptions. As for interval estimation comparisons,
note that for µ1, µ2, µ3 and µ4, model averaging and the full model estimation produce
the same interval estimates as these estimands are all linear functions of regression coeffi-
cients. Also, model selection generally results in narrower confidence intervals than do full
model estimation or model averaging. This should not be interpreted as that model selection
produces more precise interval estimation because model selection neglects the uncertainty
in the stage of model selection when constructing confidence intervals. For the purpose of
comparison, results ignoring the measurement errors are ignored are also given in Table 2.
In general, compared with the results when measurement errors are taken into account, the
estimates of µ1, µ4 and µ5 are larger, while the estimates of µ2 and µ3 are smaller. A partic-
ular interesting observation from the comparisons is that the difference is the least for the
results using the FIC. The results are identical for µ1 and µ5. This does not mean that the
FIC can remove the effects of measurement errors. The reason for this will be explained by
the results of model selection below.

Table 3 gives the results for model selection. In addition to the mandatory variables, the AIC
included three optional variables in the selected model: alcohol usage, Vitamin A intake level
and one indicator of race categories. The BIC also included the alcohol usage and vitamin
A intake level in the chosen model but exclude the indicator of race categories. The AIC
and the BIC always chose the same model regardless of the parameter of interest. On the
other hand, for different parameters of interest, the FIC selected different models. If the
measurement errors are ignored, the AIC added vitamin C intake level to the model, while
the BIC removed vitamin A level from the model. The FIC, on the other hand, selected the
same models for estimating µ1, µ4 and µ5. Furthermore, the models for estimating µ1 and
µ5 do not include x6 or x7, the variables measured with errors, and that is the reason why
the estimation results are identical for these parameters with or without measurement errors
taken into account. We see that although the FIC cannot remove the effect of measurement
errors, it may avoid the effect by selecting a suitable model that is not affected by the
measurement errors for some parameters of interest.
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5 Concluding remarks

In this paper, we derive the FIC for the varying-coefficient partially linear model when
covariates are measured with errors, which has generalized Claeskens and Hjort (2003)’s
frame work to include a larger class of models. Moreover, we have extended Wang et al.
(2012)’s results to address a situation when covariates in both the parametric and the non-
parametric parts of the varying-coefficient partially linear model are measured with errors
and covariance matrices of measurement errors are unknown. We notice that the limiting
variables ΛS and Λ have the same expressions as those in Wang et al. (2012), but the
underlying distributions are different. If Zi is free of measurement errors, then our results
reduce to those in Wang et al. (2012).
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Appendix

The following conditions are required for the proof.

1. The random variable T has bounded support Ω, and its density f is Lipschitz contin-
uous and bounded away from 0 on its support.

2. For each T ∈ Ω, the r × r matrix E(ZZ>|T ) is non-singular, and each element of
E(ZZ>|T ), E(XX>|T ) or E(ZX>|T ) is Lipschitz continuous.

3. There exists some ε > 2 such that E‖X‖2ε <∞, E‖Z‖2ε <∞, E‖U‖2ε <∞, E‖V ‖2ε <
∞ and E‖ε‖2ε <∞, and ρ < 2− ε−1 such that nh2ρ−1 →∞ and nh8 → 0.

4. αj(T ), j = 1, ..., r, is twice continuously differentiable in T ∈ Ω.

5. K(·) is a symmetric density with compact support.

Proof of Theorem 1. Let Ûi = (ψ̄iU)>, ε̂i = ψ̄iε and 5 = ˜̄W>˜̄W − nJ−1Σ̂u. Then from
equation (4), we have

θ̂ − θtrue = 5−1

n∑
i=1

(W̄i − ˆ̄Wi)(Yi − ˆ̄Yi)−5−15 θtrue

= 5−1nJ−1Σ̂uθtrue +5−1

n∑
i=1

(W̄i − ˆ̄Wi)
{
Yi − ˆ̄Yi − (W̄i − ˆ̄Wi)

>θtrue

}
.
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From the expressions of ˆ̄Yi,
ˆ̄Wi,

ˆ̄Ui and ˆ̄εi, we obtain

Yi − ˆ̄Yi − (W̄i − ˆ̄Wi)
>θtrue = Z>i α(Ti) + εi − Ū>i θtrue − ε̂i + ˆ̄U>i θtrue − ψ̄iM.

Hence,

n∑
i=1

(W̄i − ˆ̄Wi)
{
Yi − ˆ̄Yi − (W̄i − ˆ̄Wi)θtrue

}
=

n∑
i=1

(W̄i − ˆ̄Wi)(εi − Ū>i θtrue) +
n∑
i=1

(W̄i − ˆ̄Wi)(
ˆ̄U>i θtrue − ε̂i) +

n∑
i=1

(W̄i − ˆ̄Wi){Z>i α(Ti)− ψ̄iM}

=
n∑
i=1

[
W̄i − E(W̄iZ

>
i |Ti){E(ZiZ

>
i |Ti)}−1ζ̄i

]
(εi − Ū>i θtrue)

+
n∑
i=1

[
E(W̄iZ

>
i |Ti){E(ZiZ

>
i |Ti)}−1ζ̄i − ˆ̄Wi

]
(εi − Ū>i θtrue)

+
n∑
i=1

(W̄i − ˆ̄Wi)(
ˆ̄U>i θtrue − ε̂i) +

n∑
i=1

(W̄i − ˆ̄Wi){Z>i α(Ti)− ψ̄iM}

≡J1 + J2 + J3 + J4.

Applying the method used in Fan and Huang (2005) provides that, uniformly in T , ˆ̄W>
i =

(ζ̄
>
i , 0)

{
(Dζ̄ti)

>ΩtiD
ζ̄
ti − φ̄ti

}−1

(Dζ̄ti)
>ΩtiW = ζ̄>i {E(ZiZ

>
i |Ti)}−1E(ZiX

>
i |Ti){1 + OP (cn)},

where cn = {log(1/h)/(nh)}1/2 + h2. In addition, since {E(W̄iZ
>
i |Ti)}> = E(ZiW̄

>
i |Ti) and

θtrue = θ0 + (0>, δ>)>/
√
n, we have

J2 =
n∑
i=1

[E(W̄iZ
>
i |Ti){E(ZiZ

>
i |Ti)}−1ζ̄i](εi − Ū>i θ0)OP (cn).

The application of the Central Limit Theorem yields
∑n

i=1[E(W̄iZ
>
i |Ti){E(ZiZ

>
i |Ti)}−1Zi](εi−

Ū>i θ0) = OP (
√
n). Therefore, J2 = OP (

√
ncn) = oP (

√
n). Similarly J3 = oP (

√
n), and

J4 = oP (
√
n). Using Slutsky’s Theorem and recognizing that 5/n = Bn

p−→ B as n → ∞,
we obtain

√
n(θ̂ − θtrue) =

(
5
n

)−1
1√
n

n∑
i=1

{(
W̄i − E(W̄iZ

>
i |Ti){E(ZiZ

>
i |Ti)}−1ζ̄i

)
×
(
εi − Ū>i θtrue

)
+

∑J
j=1(Wij − W̄i)

⊗2θtrue

J(J − 1)

}
+ oP (1)

=

(
5
n

)−1
1√
n

n∑
i=1

{(
W̄i − E(W̄iZ

>
i |Ti){E(ZiZ

>
i |Ti)}−1ζ̄i

)
× (εi − Ū>i θ0) +

∑J
j=1(Wij − W̄i)

⊗2θ0

J(J − 1)

}
+ oP (1)

d−→N(0, B−1FB−1).
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The above results together with equation (5) and the Continuous Mapping Theorem finish
the proof.

Proofs of Theorem 2 and Theorem 3. With the result in Theorem 1, they can be proved
using approaches similar to those used in the proof of Theorem 1 and Theorem 2 in Wang
et al. (2012), respectively. We skip the details here to save space.
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Table 1: Empirical MSEs of each estimator relative to that of the full model
δ(1) δ(2) δ(3)

σu = σv = 0.1 0.5 0.1 0.5 0.1 0.5
n=100
µ1 S-AIC 0.986 0.987 0.985 0.985 0.984 0.987

AIC 1.000 1.000 0.998 1.002 0.992 1.002
S-BIC 0.979 0.977 0.977 0.975 0.978 0.977
BIC 0.982 0.990 0.986 0.984 0.986 0.986

S-FIC 0.968 0.958 0.968 0.957 0.971 0.960
FIC 0.965 0.953 0.964 0.951 0.969 0.956

µ2 S-AIC 0.722 0.743 0.687 0.733 0.665 0.725
AIC 0.862 0.869 0.834 0.865 0.804 0.848

S-BIC 0.642 0.624 0.556 0.596 0.516 0.586
BIC 0.754 0.720 0.636 0.677 0.576 0.658

S-FIC 0.566 0.474 0.391 0.348 0.337 0.320
FIC 0.671 0.521 0.399 0.351 0.308 0.310

n=200
µ1 S-AIC 0.992 0.989 0.994 0.989 0.993 0.988

AIC 0.991 0.992 0.996 0.993 0.997 0.993
S-BIC 0.990 0.981 0.991 0.982 0.990 0.981
BIC 0.996 0.985 0.997 0.982 0.998 0.982

S-FIC 0.986 0.973 0.987 0.973 0.986 0.973
FIC 0.986 0.968 0.987 0.969 0.985 0.967

µ2 S-AIC 0.763 0.783 0.704 0.760 0.668 0.753
AIC 0.937 0.884 0.863 0.885 0.806 0.881

S-BIC 0.692 0.672 0.554 0.610 0.491 0.593
BIC 0.809 0.768 0.627 0.698 0.568 0.678

S-FIC 0.649 0.531 0.430 0.382 0.352 0.343
FIC 0.769 0.580 0.443 0.383 0.333 0.333
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Table 2: Estimation results for CSFII data
µ1 µ2 µ3 µ4 µ5

Consider the measurement errors

S-AIC
0.443 0.185 0.501 1.055 2.399

(0.420, 0.456) (0.164, 0.221) (0.494, 0.515) (1.020, 1.280) (1.829, 2.626)

AIC
0.440 0.191 0.504 1.043 2.307

(0.422, 0.458) (0.163, 0.218) (0.491, 0.517) (0.971, 1.114) (1.910, 2.705)

S-BIC
0.443 0.185 0.500 1.055 2.403

(0.420, 0.456) (0.164, 0.221) (0.494, 0.515) (1.020, 1.280) (1.886, 2.683)

BIC
0.439 0.191 0.503 1.012 2.300

(0.421, 0.458) (0.164, 0.219) (0.490, 0.517) (0.956, 1.068) (1.905, 2.696)

S-FIC
0.444 0.182 0.499 1.034 2.585

(0.420, 0.456) (0.164, 0.221) (0.494, 0.515) (1.020, 1.280) (1.908, 2.704)

FIC
0.451 0.175 0.491 0.960 2.560

(0.436, 0.467) (0.164, 0.185) (0.482, 0.500) (0.873, 1.046) (2.373, 2.747)

Full
0.438 0.193 0.504 1.150 2.275

(0.420, 0.456) (0.164, 0.221) (0.494, 0.515) (1.020, 1.280) (1.877, 2.673)

Ignore the measurement errors

S-AIC
0.446 0.176 0.497 1.068 2.531

(0.428, 0.459) (0.168, 0.191) (0.491, 0.509) (1.024, 1.206) (2.224, 2.676)

AIC
0.444 0.179 0.500 1.073 2.488

(0.429, 0.46) (0.167, 0.19) (0.491, 0.509) (1.037, 1.109) (2.269, 2.707)

S-BIC
0.446 0.176 0.497 1.068 2.533

(0.428, 0.459) (0.168, 0.191) (0.491, 0.509) (1.024, 1.206) (2.248, 2.7)

BIC
0.446 0.174 0.496 1.046 2.560

(0.431, 0.462) (0.164, 0.185) (0.487, 0.505) (1.031, 1.061) (2.353, 2.767)

S-FIC
0.447 0.176 0.495 1.046 2.564

(0.428, 0.459) (0.168, 0.191) (0.491, 0.509) (1.024, 1.206) (2.25, 2.702)

FIC
0.451 0.174 0.492 0.979 2.560

(0.436, 0.467) (0.164, 0.185) (0.483, 0.5) (0.9, 1.057) (2.353, 2.767)

Full
0.444 0.179 0.500 1.115 2.473

(0.428, 0.459) (0.168, 0.191) (0.491, 0.509) (1.024, 1.206) (2.247, 2.699)
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Table 3: Model selection results for CSFII data
Consider the measurement errors Ignore the measurement errors

AIC x1, x2, x3, x4, x7, x9 x1, x2, x3, x4, x6, x7, x9

BIC x1, x2, x3, x4, x7 x1, x2, x3, x4

FIC

µ1 x1, x2, x3, x5, x9 x1, x2, x3, x5, x9

µ2 x1, x2, x3, x4, x9, x10, x11 x1, x2, x3, x4, x9, x11

µ3 x1, x2, x3 x1, x2, x3, x7

µ4 x1, x2, x3, x4, x7, x8, x10 x1, x2, x3, x4, x7, x8, x10

µ5 x1, x2, x3, x4 x1, x2, x3, x4
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