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Abstract We study two-stage adaptive designs in which data accumulated in the
first stage are used to select the design for a second stage. Inference following such
experiments is often conducted by ignoring the adaptive procedure and treating the
design as fixed. Alternative inference procedures approximate the variance of the
parameter estimates by approximating the inverse of expected Fisher information.
Both of these inferential methods often rely on normal distribution assumptions in
order to create confidence intervals. In an effort to improve inference, we develop
bootstrap methods that condition on a non-ancillary statistic that defines the second
stage design.

1 Introduction

In many experiments, the evaluation of designs with respect to a specific objective
requires knowledge of the true model parameters. Examples include optimal designs
for the estimation of nonlinear functions of the parameters in linear models; optimal
designs for the estimation of linear functions of parameters in nonlinear models; and
dose-finding designs where it is desired to treat patients at a pre-specified quantile of
the response function. In the absence of perfect knowledge of the model parameters,
it is appealing to update initial parameter estimates using data accumulated from all
previous stages and to allocate observations in the current stage by an assessment
of designs evaluated at these estimates. Such procedures result in designs that are
functions of random variables whose distributions depend on the model parameters,
i.e., the designs are not ancillary statistics.

A. Lane (�)
Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
e-mail: Adam.Lane@cchmc.org

H. Wang
University of New Hampshire, 33 Academic Way, Durham, NH 03824, USA
e-mail: HaiYing.Wang@unh.edu

N. Flournoy
University of Missouri, 146 Middlebush Hall, Columbia, MO 65211, USA
e-mail: flournoyn@missouri.edu

© Springer International Publishing Switzerland 2016
J. Kunert et al. (eds.), mODa 11 - Advances in Model-Oriented Design
and Analysis, Contributions to Statistics, DOI 10.1007/978-3-319-31266-8_20

173

haiying.wang@unh.edu

mailto:flournoyn@missouri.edu
mailto:HaiYing.Wang@unh.edu
mailto:Adam.Lane@cchmc.org


174 A. Lane et al.

In practice it is common to conduct inference ignoring the adaptive nature of
the experiment and treating the design as if it were an ancillary statistic. The
potential issues resulting from such procedures are well known; see [1]. Briefly,
when a design is ancillary, it is non-informative with respect to model parame-
ters. Analysing adaptive experiments with non-ancillary designs as if the design
were ancillary does not account for all the information contained in the design.
An alternative often suggested is to approximate the variance of the maximum
likelihood estimate (MLE) with an approximation of the inverse of the expected
Fisher information (defined below). Regardless of the method, the distribution of
the MLE resulting from adaptive experiments are often assumed to follow a normal
distribution when used to create confidence intervals.

We develop three bootstrap procedures that approximate the distribution of the
MLE conditional on a non-ancillary statistic that defines the second stage design.
The bootstrap reduces the reliance on the assumption of normality. A bootstrap
procedure in the context of adaptive experiments with binary outcomes, primarily
in the context of urn models, has been developed previously [7].

2 The Model and an Illustration of the Problem

Consider an experiment conducted to measure a constant � . Suppose it is possible to
obtain unbiased observations y of � from two sources; each source k D r; s produces
errors from a N .0; �2k /, where �2r ¤ �2s are known constants. Throughout this
paper Y and y denote the random variable and its observed realization, respectively.
A function  .�/ is defined to determine which of the two sources should be used
based on maximizing efficiency, ethics, cost or other considerations. For illustration,
we use  .�/ D r if � < c and s otherwise, given some constant c.

The adaptive procedure is as follows: obtain an initial cohort of n1 independent
observations, y1 D .y11; : : : ; y1n1 /, from source r. Evaluate  at the MLE of �
based on first stage observations; O�1 D y1 D Pn1

jD1 y1j=n1. The function  .y1/
determines the source from which a second cohort of n2 independent observations,
y2 D .y21; : : : ; y2n2 /, will be obtained and induces a correlation between Y1 and Y2.
This model has been used to illustrate conditional inference in experiments with
ancillary designs; see [2] and [4]. Here we use the model to illustrate conditional
inference with non-ancillary designs in adaptive experiments.

Let N D n1 C n2 represent the total sample size; and let Sr D .�1; c/ and Ss D
.c;1/ be the regions of the parameter space that selects the second stage source.
The second stage design is completely determined by the non-ancillary variable
I.Y1 2 Sk/, k D r; s, where I.�/ is the indicator function. Therefore, Y2jY1 2 Sk

is independent of Y1, k D r; s. The log likelihood is l� D �n1 .y1 � �/2 =2�2r �
n2 .y2 � �/2 =2�2 .y1/C constant. Defining w.y1/ D .n1=�2r Cn2=�2 .y1//

�1, the MLE

based on both stages is O� D w.y1/.n1y1=�
2
r C n2y2=�

2
 .y1/

/.
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To approximate the distribution of O�.Y1;Y2/jY1 2 Sk, k D r; s, three boot-
strap methods are developed. Resulting parameter estimates and confidence inter-
vals are compared to analyses where the variance of the MLE is approximated
using the inverse of the observed and expected Fisher information: I . O�/ D
�Œ@2l�=@�2��D O� D w�1.y1/ and F� D EŒI . O�/�, respectively. Confidence intervals
for comparative methods are then constructed using normal quantiles. If the design
were ancillary, then the variance of the MLE would be w.y1/. Using F�1

� to
approximate the variance, does not treat the design as ancillary. But it is a function
of � and must be estimated; F�1

O� is used here. In contrast, since Y2jY1 2 Sk is

independent of Y1, O�.Y1;Y2/jY1 2 Sk has variance

Var
h O�.Y1;Y2/jY1 2 Sk

i
D w2k

�
n21
�4r

Var
�
Y1jY1 2 Sk


C n2
�2k

�
;

where wk D .n1=�2r C n2=�2k /
�1. The design of the second stage is completely

determined by I.Y1 2 Sk/. Therefore f .Y1/jY1 2 Skg D k. The function w.Y1/
depends on Y1 only through  .Y1/. Hence fw.Y1/jY1 2 Skg D wk, for k D r; s.

Let pk D P.Y1 2 Sk/, Ek D EŒ O�.Y1;Y2/jY1 2 Sk�, Vk D VarŒ O�.Y1;Y2/jY1 2 Sk�

and Ik D I . O�/, k D r; s for short.
From a series of 10,000 simulations, Table 1 presents, for k D r; s, pk, Ek, Nbse2

and tail probabilities, PŒ� < Cl� and PŒ� > Cu�, where bse2 is either VarŒ O�.Y1;Y2/�,
Vk, I �1

k or F�1
� ; Cl D O� � Z1�˛=2bse, Cu D O� C Z1�˛=2bse and Z˛ is the ˛ quantile

of the standard normal distribution. Values of � D 1, �r D 1, �s D 3, n1 D 50,
n2 D 150, c D � C 1=

p
n1 and ˛ D 0:05 are used throughout. Both I �1

k and
F�1
� are significantly greater than Vk, k D r; s. Both Vk, k D r; s, are significantly

less than VarŒ O�.Y1;Y2/�. If Y1 2 Sr, then Er is nearly unbiased, and despite slightly
unbalanced tail probabilities, overall coverage would be adequate if Vr were known
and could be used. When Y1 2 Ss, the bias is considerable and the coverage is
unacceptable. We focus throughout on improvements when Y1 2 Ss.

Table 1 Conditional probability, conditional expectation, variance approximation method along
with its estimate and tail probabilities by the source of the second stage observations

Source pk Ek Variance approximation Nbse2 PŒ� < Cl� PŒ� > Cu�

r 0.77 0.99 Vr 0.88 0.02 0.04

VarŒ O�.Y1; Y2/� 1.77 0.00 0.01

I �1
r 1.00 0.01 0.03

F�1
� 1.47 0.00 0.01

s 0.23 1.14 Vs 1.24 0.39 0.00

VarŒ O�.Y1; Y2/� 1.77 0.26 0.00

I �1
s 3.00 0.10 0.00

F�1
� 1.47 0.33 0.00
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3 Conditional Bootstrap Inference

In an effort to improve inference following adaptive experiments, three bootstrap
methods are developed. We begin with a straightforward and intuitive conditional
bootstrap procedure. Unfortunately, as will be discussed, the conditions required for
this procedure to give accurate inference are extremely restrictive.

Conditional Bootstrap Method 1 (BM1)

1. Construct a probability distribution, OFi, by putting mass 1=ni at each point
yi1; : : : ; yini , i D 1; 2. With fixed OF1 and OF2, draw random samples of size n1
and n2 from OF1 and OF2, respectively. Denote the vector of bootstrap samples as
y�

i ; i D 1; 2.
2. Repeat step 1 B times. For the bootstrap samples satisfying y�

1 2 S .y1/, use Ny�
1

and Ny�
2 to find O��. Use .Cl;Cu/ D .Q�̨

=2;Q
�
1�˛=2/ as the .1 � ˛/ confidence

interval, where Q�̨ is the ˛ quantile of the bootstrapped sample distribution
O��.Y�

1 ;Y
�
2 /jY�

1 2 S .y1/.

Let P� be the empirical probability measure given Y1 and let Œ��b represent the
bth sampled bootstrap. Then P�.Y�

1 2 S .y1// 
 PB
bD1 I.Œy�

1 �b 2 S .y1//=B is the
probability the mean of a bootstrap sample is in S .y1/.

Table 2 presents the simulation results ps, Es, Vs, Cl, Cu, PŒ� < Cl� and
PŒ� > Cu�. The first row results are for the distribution of O�.Y1;Y2/jY1 2 Ss. The
second and third row results use I �1

s and F�1
O� , and tail probabilities found using

Table 2 Results are conditional on the region Y1 2 Ss. Method describes the procedure by which
the approximate distribution was obtained; ps is approximated by

PB
bD1 I.Œy�

1 �b 2 Ss/=B for

the bootstrap and by P.Y1 2 Ssj� D O�/ for the expected information. Es, Vs, the confidence
limits and tail probabilities are also provided. All values are averages from 10,000 simulations
except the column ps which uses the median. “True” refers to either the empirical distribution of
O�.Y1; Y2/jY1 2 Ss or Q�.Y1; Y2/jY1 2 Ss obtained from simulation

Estimate Method ps Es N*Vs Cl Cu PŒ� < Cl� PŒ� > Cu�

O� True 0.23 1.14 1.24 0.99 1.30 – –
O� F�1

O�
0.59 1.14 2.17 0.93 1.34 0.14 0.00

O� I �1
s – 1.14 3.00 0.90 1.38 0.10 0.00

O�� BM1 0.67 1.19 1.87 1.02 1.39 0.63 0.00
O�C BM2 0.25 1.13 1.36 0.99 1.30 0.41 0.00
Q� True 0.23 1.00 5.25 0.66 1.28 – –
Q� � Q� 0.74 1.00 6.47 0.65 1.35 0.02 0.01
Q�C BM3 0.25 0.98 5.60 0.65 1.29 0.02 0.02
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quantiles of the standard normal distribution. The fourth row results are from BM1
using B D 1000 bootstrap samples. All values are averages except ps whose values
are skewed and for which the median provides a better summary of the data. Both
P�.Y�

1 2 Ss/ and P.Y1 2 Ssj� D O�/ are significantly greater than ps. The methods
BM1 and F�1

O� produce similar variances, both of which are less than I �1
s . All

three approximations are significantly greater than Vs. However, the mean of the
bootstrap distribution has greater bias than O� . Thus BM1 does not improve inference
in comparison to using F�1

O� .

3.1 Technical Details for the Conditional Bootstrap

In this section we consider the MLE conditional on an indicator function of the first
stage sample mean. This illustrates the implications of conditioning in two-stage
adaptive experiments with non-ancillary designs and why the inference produced by
BM1 was poor. Let Tk D .ak; dk/, where ak D � C a0

k=
p

n1, dk D � C d0
k=

p
n1, a0

k
and d0

k are constants. This is a slightly more general division of the parameter space
than Sk which has only one of a0

k and d0
k finite. Note, we consider the parameter

space defined in a local neighborhood of � . This is done so that P.Y1 2 Sk/, k D r; s
has positive probability not equal to 1 for large n1; otherwise the design would be
deterministic for large first stage sample sizes and not adaptive. Consider

P�
hp

n1
�

Y
�
1 � Y1

�
< xjpn1

�
Y

�
1 � Y1

�
2 p

n1.ak � �; dk � �/
i

D
P�
h
fpn1

�
Y

�
1 � Y1

�
< xg \ fpn1.Y

�
1 � Y1/ 2 p

n1.ak � �; dk � �/g
i

P�
hp

n1.Y
�
1 � Y1/ 2 p

n1.ak � �; dk � �/
i

D P
�fpn1

�
Y1 � �

	
< xg \ fpn1.Y1 � �/ 2 p

n1.ak � �; dk � �/g
C o.1/

P
�p

n1.Y1 � �/ 2 p
n1.ak � �; dk � �/


C o.1/

D P
�p

n1
�
Y1 � �	 < xjpn1

�
Y1 � �

	 2 p
n1.ak � �; dk � �/
C o.1/;

(1)

where x 2 R, and the equalities hold almost surely under P. Note, from the left hand
side of equation (1), that a conditional bootstrap should include bootstrap samples

satisfying
p

n1
�

Y
�
1 � Y1

�
2 p

n1.ak ��; dk ��/, i.e., Y
�
1 2 .ak �"1; dk �"1/, where

"1 D Y1 � � . BM1 considers bootstrap samples satisfying Y
�
1 2 .ak; dk/ and hence
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its poor performance. Unfortunately, � is unknown and must be estimated. In (1), if
one can replace � with an estimator (say Q�) that converges to � at a rate faster thanp

n1, then

P� hpn1
�

Y
�
1 � Y1

�
< xjpn1

�
Y

�
1 � Y1

�
2 p

n1.ak � Q�; dk � Q�/
i

D P
�p

n1
�
Y1 � �

	
< xjpn1

�
Y1 � �

	 2 p
n1.ak � �; dk � �/
C oP.1/:

(2)

In a single stage experiment this would not be possible. However, in a two-
stage adaptive experiment in which n1 D o.n2/, such an estimator may exist.
Theoretically this is somewhat unsatisfactory, but practically this is interesting
especially since it has been shown that two-stage experiments are optimized when
n1 D O.

p
n2/; see [5] and [6]. It is also common, for practical or logistical reasons,

that a small pilot study precedes a much larger follow-up.
Note Y1jY1 2 Tk � TN .�; �2k =n1I Tk/, where TN denotes a truncated normal

distribution. Suppose an estimator, Q� , exists as described and let QTk D .ak � Q"1; dk �
Q"1/, where Q"1 D Y1 � Q� . Then (2) implies fY

�
1 jY�

1 2 QTkg can be approximated by a
TN .y1; �

2
k =n1I QTk/ and therefore

E�
Y1

h
Y

�
1 jY�

1 2 QTk

i

 Y1 C b1k. Q�/I (3)

VarY1

h
Y

�
1 jY�

1 2 QTk

i

 �2k

n1

�
1C
 Q� .ak/�f
 Q� .ak/g � 
 Q� .dk/�f
 Q� .dk/g

U

�
�
n
b1k. Q�/

o2
:

where b1k.�/ D �k Œ�f
�.ak/g � �f
�.dk/g� =.pn1U/, 
� .ak/ D p
n1.ak � �/=�k,

U D ˚f
�.b/g � ˚f
� .a/g; �.�/ and ˚.�/ represent the probability density
function (PDF) and cumulative distribution function (CDF) of the standard normal
distribution, respectively. Note a conditional bootstrap leads to an additional bias
term in the expectation in equation (3). This must be accounted for in any
conditional bootstrap procedure.

4 Adjusted Conditional Bootstrap Methods

The bootstrap methods developed in this section are predicated on the existence
of an estimator that converges to � at a rate faster than

p
n1. Provided standard

regularity conditions hold and n1 D o.n2/, such an estimator will always exists in
the form of the second stage MLE conditional on the second stage design. However,
in cases where the bias has an explicit form, it is possible to obtain Q� by adapting
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the bias reduction method suggested in [8]. Note

E
h O�.Y1;Y2/jY1 2 Sk

i
D wkE

�
n1Y1=�

2
k C n2Y2=�

2
k jY1 2 Sk



D wk

�
n1=�

2
r C n2=�

2
k

	
� C wkn1b1k.�/=�

2
r

D � C wkn1b1k.�/=�
2
r :

Let bk.�/ D wkn1b1k.�/=�
2
r . Then a bias corrected estimate of � is Q� D O� � bk. Q�/.

The Newton-Raphson method was used to solve this equation. One iteration was
sufficient, that is, Q� D O� � �k. O�/, where �k. O�/ D bk. O�/=Œ1C .@bk.�/=@�/�D O� � was
used for analytic expressions and numeric calculations.

Now we develop a bootstrap method that adjusts the conditioning region per
the discussion in Sect. 3.1. Let QSr D f�1; c � Q"1g and QSs D fc � Q"1;1g, where
Q"1 D Y1 � Q� .

Adjusted Conditional Bootstrap Method (BM2): Repeat BM1 keeping only
bootstrap samples satisfying y�

1 2 QS .y1/. Let O�C D O�� � b .y1/.
Q�/ and

.CC
l ;C

C
u / D .QC

˛=2;Q
C
1�˛=2/ as the .1 � ˛/ confidence interval, where QC̨ is

the ˛ quantile of the bootstrap sample distribution of O�C.Y�
1 ;Y

�
2 /jY�

1 2 QS .y1/.
Note O�C is used in place of O�� to correct for the additional bias term previously

discussed.
A concern in inference when the variance of the MLE depends on the parameter

estimates is how sensitive the approximate distribution is to this estimate. Figure 1
(top left) plots the histogram of the simulated distribution of f O�.Y1;Y2/jY1 2 Ssg �
Es (solid line). In the same figure, for simulations that correspond to the 0.025,
0.50 and 0.975 quantiles of O� , histograms of the bootstrap sample distributions of
f O�C.Y�

1 ;Y
�
2 /jY�

1 2 QSsg � O� (dotted, dashed and dot-dashed line) are plotted. This
figure illustrates how well BM2 works across the domain of � at approximating the
distribution O�.Y1;Y2/jY1 2 Ss. Compare this to Fig. 1 (top right) which plots the
PDF of N .0;F�1

O� / for F�1
O� evaluated at the same quantiles of O� . The bootstrap

distribution is less sensitive to the value of O� than N.0;F�1
O� / and it provides a better

approximation to the shape of the target distribution.
The fifth row of Table 2 shows that with BM2 P�.Y�

1 2 QSs/ is nearly equal to ps;
E�Œ O�C.Y�

1 ;Y
�
2 /jY�

1 2 QSs� is approximately equal to Es; Var�Œ O�C.Y�
1 ;Y

�
2 /jY�

1 2 QSs�

is only slightly greater than Vs; and the confidence interval endpoints correspond
to the quantiles of O� . It is clear that BM2 provides a more accurate representation
of the conditional distribution of O� than the alternatives. However, BM2 still fails
to provide adequate coverage. This is not a problem with the bootstrap but rather a
problem with the distribution of O� being tightly centered around the wrong value.
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Considering the poor coverage of BM2, we develop a bootstrap procedure for the
bias corrected estimator Q� . Recall Q� D O� � �k. O�/, k D r; s; is simply a function of
O� . Thus BM2 can be adapted to estimate its distribution. Because the distribution of
the bias is skewed, bias corrected bootstrap confidence intervals were used; see [3].

Bias Adjusted Conditional Bootstrap Method (BM3): Replace O�C in BM2
with Q�C D O�C � � .y1/.

O�C/. Use .Cl;Cu/ D Œ bCDF�1f˚.2v0 C
Z˛=2/g; bCDF�1f˚.2v0�Z˛=2/g�, where bCDF.t/ D P�Œ Q�C.Y�

1 ;Y
�
2 /jY�

1 2 QS .y1/ <
t� and v0 D ˚�1

bCDF. Q�/.
Since Q� is a function of O� , for comparison we approximate the variance of Q�

with � Q� D Œf@.� � � .y1/.�//=@�g2F�1
� �

�D O� . Figure 1 (bottom left) plots the

histogram of the simulated distribution of f Q�.Y1;Y2/jY1 2 Ssg � EŒ Q�.Y1;Y2/jY1 2
Ss� (solid line). In the same figure, for simulations that correspond to the 0.025,
0.50 and 0.975 quantiles of Q� , histograms of the bootstrap sample distributions
of f Q�C.Y�

1 ;Y
�
2 /jY�

1 2 QSsg � Q� (dotted, dashed and dot-dashed line) are plotted.
For comparison, Fig. 1 (bottom right) plots the probability density functions of a
N .0;� Q� / with � Q� evaluated at the same quantiles of Q� . Once again we see that
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Fig. 1 Histograms of bootstrap distributions f O�C.Y
�

1 ; Y
�

2 /jY�

1 2 QSsg � O� (top left) and

f Q�C.Y
�

1 ; Y
�

2 /jY�

1 2 QSsg � Q� (bottom left). Probability density functions of N.0;F�1
O�
/ (top right)

and N.0; � Q� / (bottom right). The dotted, dot dashed and dashed lines correspond to the bootstrap

distribution or expected information for the 0.025, 0.50, and 0.975 of quantiles of O� or Q� . In
each case the solid line is the histogram of the distribution of f O�.Y1; Y2/jY1 2 Ssg � Es or
f Q�.Y1; Y2/jY1 2 Ssg � EŒ Q�.Y1; Y2/jY1 2 Ss�
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Table 3 Mean square error
(MSE) for the true
distribution of O� and Q� along
with the bootstrap MSE of
O�C or Q�C for the case when
Y1 2 s

Estimate Method MSE
O� True 4.92
O�C BM2 4.98
Q� True 5.25
Q�C BM3 5.71

the BM3 well approximates the distribution Q�.Y1;Y2/jY1 2 Ss across most of the
domain of Q� , perhaps with the exception of the 0.025 quantile.

The sixth row of Table 2 shows the simulation results the distribution of
Q�.Y1;Y2/jY1 2 Ss. The seventh and eighth rows are results for � Q� and BM3,
respectively. BM3 provides an unbiased estimate of the mean; slightly overestimates
the VarŒ Q�.Y1;Y2/jY1 2 Ss�; and provides confidence limits which coincide with the
correct quantiles of Q� . Coverage is slightly less than the nominal level, but is a
significant improvement over inference methods for O� . Note using � Q� significantly
overestimates VarŒ Q�.Y1;Y2/jY1 2 Ss� and slightly skews the confidence limits.

The performance of O�C and Q�C reflects the bias versus variance tradeoff. Table 3
compares the mean square error (MSE) for the simulated distribution of O� and Q�
along with the bootstrap MSE of O�C and Q�C for the case when  .y1/ D s. Despite
the shortcomings of the procedure for O�C, it still provides a lower MSE than Q�C in
this example.
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